
Rally Documentation
Release 0.4.5

Daniel Mitterdorfer

November 22, 2016

Contents

1 Getting Help or Contributing to Rally 3

2 Source Code 5

3 Contents 7

4 License 45

i

ii

Rally Documentation, Release 0.4.5

You want to benchmark Elasticsearch? Then Rally is for you. It can help you with the following tasks:

• Setup and teardown of an Elasticsearch cluster for benchmarking

• Management of benchmark data and specifications even across Elasticsearch versions

• Running benchmarks and recording results

• Finding performance problems by attaching so-called telemetry devices

• Comparing performance results

We have also put considerable effort in Rally to ensure that benchmarking data are reproducible.

Contents 1

Rally Documentation, Release 0.4.5

2 Contents

CHAPTER 1

Getting Help or Contributing to Rally

Use our Discuss forum to provide feedback or ask questions about Rally. Please see our contribution guide on guide-
lines for contributors.

3

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 0.4.5

4 Chapter 1. Getting Help or Contributing to Rally

CHAPTER 2

Source Code

Rally’s source code is available on Github.

5

https://github.com/elastic/rally

Rally Documentation, Release 0.4.5

6 Chapter 2. Source Code

CHAPTER 3

Contents

3.1 Quickstart

3.1.1 Install

Install Python 3.4+ including pip3, JDK 8 and git 1.9+. Then run the following command, optionally prefixed by
sudo if necessary:

pip3 install esrally

If you have any trouble or need more detailed instructions, please look in the detailed installation guide.

3.1.2 Configure

Just invoke esrally configure.

For more detailed instructions and a detailed walkthrough see the configuration guide.

3.1.3 Run your first race

Now we’re ready to run our first race:

esrally --distribution-version=5.0.0

This will download Elasticsearch 5.0.0 and run Rally’s default track against it. After the race, a summary report is
written to the command line::
--

_______ __ _____
/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

Metric	Operation	Value	Unit
Indexing time		28.0997	min
Merge time		6.84378	min
Refresh time		3.06045	min
Flush time		0.106517	min

7

Rally Documentation, Release 0.4.5

Merge throttle time		1.28193	min
Median CPU usage		471.6	%
Total Young Gen GC		16.237	s
Total Old Gen GC		1.796	s
Index size		2.60124	GB
Totally written		11.8144	GB
Heap used for segments		14.7326	MB
Heap used for doc values		0.115917	MB
Heap used for terms		13.3203	MB
Heap used for norms		0.0734253	MB
Heap used for points		0.5793	MB
Heap used for stored fields		0.643608	MB
Segment count		97	
Min Throughput	index-append	31925.2	docs/s
Median Throughput	index-append	39137.5	docs/s
Max Throughput	index-append	39633.6	docs/s
50.0th percentile latency	index-append	872.513	ms
90.0th percentile latency	index-append	1457.13	ms
99.0th percentile latency	index-append	1874.89	ms
100th percentile latency	index-append	2711.71	ms
50.0th percentile service time	index-append	872.513	ms
90.0th percentile service time	index-append	1457.13	ms
99.0th percentile service time	index-append	1874.89	ms
100th percentile service time	index-append	2711.71	ms
...
...
Min Throughput	painless_dynamic	2.53292	ops/s
Median Throughput	painless_dynamic	2.53813	ops/s
Max Throughput	painless_dynamic	2.54401	ops/s
50.0th percentile latency	painless_dynamic	172208	ms
90.0th percentile latency	painless_dynamic	310401	ms
99.0th percentile latency	painless_dynamic	341341	ms
99.9th percentile latency	painless_dynamic	344404	ms
100th percentile latency	painless_dynamic	344754	ms
50.0th percentile service time	painless_dynamic	393.02	ms
90.0th percentile service time	painless_dynamic	407.579	ms
99.0th percentile service time	painless_dynamic	430.806	ms
99.9th percentile service time	painless_dynamic	457.352	ms
100th percentile service time	painless_dynamic	459.474	ms

[INFO] SUCCESS (took 2634 seconds)

3.1.4 Next steps

Now you can check how to run benchmarks or how to define your own benchmarks.

Also run esrally --help to see what options are available and keep the command line reference handy for more
detailed explanations of each option.

3.2 Installation

This is the detailed installation guide for Rally. If you are in a hurry you can check the quickstart guide.

8 Chapter 3. Contents

Rally Documentation, Release 0.4.5

3.2.1 Prerequisites

Before installing Rally, please ensure that the following packages are installed:

• Python 3.4 or better available as python3 on the path (verify with: python3 --version which should print
Python 3.4.0 or higher)

• pip3 available on the path (verify with pip3 --version)

• JDK 8

• git 1.9 or better

Rally does not support Windows and is only actively tested on Mac OS X and Linux.

Note: If you use RHEL, please ensure to install a recent version of git via the Red Hat Software Collections.

3.2.2 Installing Rally

Simply install Rally with pip: pip3 install esrally

Note: Depending on your system setup you may need to prepend this command with sudo.

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Please check the installation instructions of psutil in this case. Keep in mind that Rally
is based on Python 3 and you need to install the Python 3 header files instead of the Python 2 header files on Linux.

3.2.3 Non-sudo Install

If you don’t want to use sudo when installing Rally, installation is still possible but a little more involved:

1. Specify the --user option when installing Rally (step 2 above), so the command to be issued is: python3
setup.py develop --user.

2. Check the output of the install script or lookup the Python documentation on the variable site.USER_BASE to
find out where the script is located. On Linux, this is typically ~/.local/bin.

You can now either add ~/.local/bin to your path or invoke Rally via ~/.local/bin/esrally instead of
just esrally.

3.2.4 VirtualEnv Install

You can also use Virtualenv to install Rally into an isolated Python environment without sudo.

1. Set up a new virtualenv environment in a directory with virtualenv --python=python3.

2. Activate the environment with /path/to/virtualenv/dir/bin/activate.

3. Install Rally with pip install esrally

Whenever you want to use Rally, run the activation script (step 2 above) first. When you are done, simply execute
deactivate in the shell to exit the virtual environment.

3.2. Installation 9

https://www.softwarecollections.org/en/scls/rhscl/git19/
https://github.com/giampaolo/psutil/blob/master/INSTALL.rst
https://docs.python.org/3.5/library/site.html#site.USER_BASE

Rally Documentation, Release 0.4.5

3.2.5 Next Steps

After you have installed, you need to configure it. Just run esrally configure or follow the configuration help
page for more guidance.

3.3 Configuration

Rally has to be configured once after installation. If you just run esrally after installing Rally, it will detect that the
configuration file is missing and asks you a few questions.

If you want to reconfigure Rally at any later time, just run esrally configure again.

Note: If you get the error UnicodeEncodeError: ’ascii’ codec can’t encode character,
please configure your shell so it supports UTF-8 encoding. You can check the output of locale which should show
UTF-8 as sole encoding. If in doubt, add export LC_ALL=en_US.UTF-8 to your shell init file (e.g. ~/.bashrc
if you use Bash) and relogin.

3.3.1 Simple Configuration

By default, Rally will run a simpler configuration routine and autodetect as much settings as possible or choose defaults
for you. If you need more control you can run Rally with esrally configure --advanced-config.

Rally can build Elasticsearch either from sources or use an official binary distribution. If you have Rally build Elas-
ticsearch from sources, it can only be used to benchmark Elasticsearch 5.0 and above. The reason is that with Elas-
ticsearch 5.0 the build tool was switched from Maven to Gradle. As Rally only supports Gradle, it is limited to
Elasticsearch 5.0 and above.

If you want to build Elasticsearch from sources, Gradle 2.13 needs to be installed prior to running the configuration
routine.

Let’s go through an example step by step: First run esrally:

dm@io:~ $ esrally

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. You can run the advanced configuration with:

esrally configure --advanced-config

[] Autodetecting available third-party software
git : []
gradle : []
JDK 8 : []

[] Setting up benchmark data directory in [/Users/dm/.rally/benchmarks] (needs several GB).

As you can see above, Rally autodetects if git, Gradle and JDK 8 are installed. If you don’t have Gradle, that’s no
problem, you are just not able to build Elasticsearch from sources. Let’s assume you don’t have Gradle installed:

10 Chapter 3. Contents

https://www.elastic.co/downloads/elasticsearch

Rally Documentation, Release 0.4.5

dm@io:~ $ esrally

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. You can run the advanced configuration with:

esrally configure --advanced-config

[] Autodetecting available third-party software
git : []
gradle : []
JDK 8 : []

**
You don't have the necessary software to benchmark source builds of Elasticsearch.

You can still benchmark binary distributions with e.g.:

esrally --distribution-version=5.0.0

**

As you can see, Rally tells you that you cannot build Elasticsearch from sources but you can still benchmark official
binary distributions.

It’s also possible that Rally cannot automatically find your JDK 8 home directory. In that case, it will ask you later in
the configuration process.

After the initial detection, Rally will try to autodetect your Elasticsearch project directory (either in the current direc-
tory or in ../elasticsearch). If all goes well, then you will see this:

[] Autodetected Elasticsearch project directory at [/Users/dm/elasticsearch].

Otherwise, Rally will choose a default directory and ask you for confirmation:

[] Setting up benchmark data directory in [/Users/dm/.rally/benchmarks] (needs several GB).
Enter your Elasticsearch project directory: [default: '/Users/dm/.rally/benchmarks/src']:

If you are ok with this default, just press “Enter” and Rally will take care of the rest. Otherwise, provide your
Elasticsearch project directory here. Please keep in mind that Rally will run builds with Gradle in this directory if you
start a benchmark.

If Rally has not found Gradle in the first step, it will not ask you for a source directory and just go on.

Now Rally is done:

[] Configuration successfully written to [/Users/dm/.rally/rally.ini]. Happy benchmarking!

To benchmark the latest version of Elasticsearch with the default benchmark run:

esrally --revision=latest

For more help see the user documentation at https://esrally.readthedocs.io

Congratulations! Time to run your first benchmark.

3.3. Configuration 11

Rally Documentation, Release 0.4.5

3.3.2 Advanced Configuration

If you need more control over a few variables or want to use advanced features like tournaments, then you
should run the advanced configuration routine. You can invoke it at any time with esrally configure
--advanced-config.

Prerequisites

When using the advanced configuration, Rally stores its metrics not in-memory but in a dedicated Elasticsearch in-
stance. Therefore, you will also need the following software installed:

• Elasticsearch: a dedicated Elasticsearch instance which acts as the metrics store for Rally. If you don’t want to
set it up yourself you can also use Elastic Cloud.

• Optional: Kibana (also included in Elastic Cloud).

Preparation

First install Elasticsearch 2.3 or higher. A simple out-of-the-box installation with a single node will suffice. Rally uses
this instance to store metrics data. It will setup the necessary indices by itself. The configuration procedure of Rally
will you ask for host and port of this cluster.

Note: Rally will choose the port range 39200-39300 (HTTP) and 39300-39400 (transport) for the benchmark cluster,
so please ensure that this port range is not used by the metrics store.

Optional but recommended is to install also Kibana. However, note that Kibana will not be auto-configured by Rally.

Configuration Options

Rally will ask you a few more things in the advanced setup:

• Elasticsearch project directory: This is the directory where the Elasticsearch sources are located. If you don’t
actively develop on Elasticsearch you can just leave the default but if you want to benchmark local changes you
should point Rally to your project directory. Note that Rally will run builds with Gradle in this directory (it runs
gradle clean and gradle :distribution:tar:assemble).

• JDK 8 root directory: Rally will only ask this if it could not autodetect the JDK 8 home by itself. Just enter the
root directory of the JDK you want to use.

• Name for this benchmark environment: You can use the same metrics store for multiple environments (e.g. local,
continuous integration etc.) so you can separate metrics from different environments by choosing a different
name.

• metrics store settings: Provide the connection details to the Elasticsearch metrics store. This should be an
instance that you use just for Rally but it can be a rather small one. A single node cluster with default setting
should do it. There is currently no support for choosing the in-memory metrics store when you run the advanced
configuration. If you really need it, please raise an issue on Github.

• whether or not Rally should keep the Elasticsearch benchmark candidate installation including all data by de-
fault. This will use lots of disk space so you should wipe ~/.rally/benchmarks/races regularly.

12 Chapter 3. Contents

https://www.elastic.co/cloud
https://www.elastic.co/cloud
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana

Rally Documentation, Release 0.4.5

3.3.3 Proxy Configuration

Rally downloads all necessary data automatically for you:

• Elasticsearch distributions from elastic.co if you specify --distribution-version=SOME_VERSION_NUMBER

• Elasticsearch source code from Github if you specify a revision number e.g. --revision=952097b

• Track meta-data from Github

• Track data from an S3 bucket

Hence, it needs to connect via http(s) to the outside world. If you are behind a corporate proxy you need to configure
Rally and git. As many other Unix programs, Rally relies that the HTTP proxy URL is available in the environment
variable http_proxy (note that this is in lower-case). Hence, you should add this line to your shell profile, e.g.
~/.bash_profile:

export http_proxy=http://proxy.acme.org:8888/

Afterwards, source the shell profile with source ~/.bash_profile and verify that the proxy URL is correctly
set with echo $http_proxy.

Finally, you can set up git:

git config --global http.proxy $http_proxy

For details, please refer to the Git config documentation.

Please verify that the proxy setup for git works correctly by cloning any repository, e.g. the rally-tracks reposi-
tory:

git clone https://github.com/elastic/rally-tracks.git

If the configuration is correct, git will clone this repository. You can delete the folder rally-tracks after this
verification step.

To verify that Rally will connect via the proxy server you can check the log file. If the proxy server is configured
successfully, Rally will log the following line on startup:

Rally connects via proxy URL [http://proxy.acme.org:3128/] to the Internet (picked up from the environment variable [http_proxy]).

Note: Rally will use this proxy server only for downloading benchmark-related data. It will not use this proxy for the
actual benchmark.

3.4 Running Races

A “race” in Rally is the execution of a benchmarking experiment. You can use different benchmarks (which we call
“tracks”) for your experiments.

3.4.1 List Tracks

Start by finding out which tracks are available:

esrally list tracks

This will show the following list:

3.4. Running Races 13

https://git-scm.com/docs/git-config

Rally Documentation, Release 0.4.5

Name Description Challenges
---------- -- --
geonames Standard benchmark in Rally (8.6M POIs from Geonames) append-no-conflicts,append-no-conflicts-index-only,append-fast-no-conflicts,append-fast-with-conflicts
geopoint 60.8M POIs from PlanetOSM append-no-conflicts,append-no-conflicts-index-only,append-fast-no-conflicts,append-fast-with-conflicts
logging Logging benchmark append-no-conflicts,append-no-conflicts-index-only,append-fast-no-conflicts,append-fast-with-conflicts
nyc_taxis Trip records completed in yellow and green taxis in New York in 2015 append-no-conflicts,append-no-conflicts-index-only
percolator Percolator benchmark based on 2M AOL queries append-no-conflicts
pmc Full text benchmark containing 574.199 papers from PMC append-no-conflicts,append-no-conflicts-index-only,append-fast-no-conflicts,append-fast-with-conflicts
tiny First 2k documents of the geonames track for local tests append-no-conflicts,append-no-conflicts-index-only,append-fast-no-conflicts,append-fast-with-conflicts

The first two columns show the name and a short description of each track. A track also specifies one or more
challenges which basically defines the operations that will be run.

3.4.2 Starting a Race

Note: Do not run Rally as root as Elasticsearch will refuse to start with root privileges.

To start a race you have to define the track and challenge to run. For example:

esrally --distribution-version=5.0.0 --track=geopoint --challenge=append-fast-with-conflicts

Rally will then start racing on this track. If you have never started Rally before, it should look similar to the following
output:

dm@io:~ $ esrally --distribution-version=5.0.0 --track=geopoint --challenge=append-fast-with-conflicts

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

[INFO] Racing on track [geopoint], challenge [append-fast-with-conflicts] and car [defaults]
[INFO] Downloading Elasticsearch 5.0.0 ... [OK]
[INFO] Rally will delete the benchmark candidate after the benchmark
[INFO] Downloading data from [http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geopoint/documents.json.bz2] (482 MB) to [/Users/dm/.rally/benchmarks/data/geopoint/documents.json.bz2] ... [OK]
[INFO] Decompressing track data from [/Users/dm/.rally/benchmarks/data/geopoint/documents.json.bz2] to [/Users/dm/.rally/benchmarks/data/geopoint/documents.json] (resulting size: 2.28 GB) ... [OK]
[INFO] Preparing file offset table for [/Users/dm/.rally/benchmarks/data/geopoint/documents.json] ... [OK]
Running index-update [0% done]

Please be patient as it will take a while to run the benchmark.

When the race has finished, Rally will show a summary on the command line:

Metric	Operation	Value	Unit
Indexing time		124.712	min
Merge time		21.8604	min
Refresh time		4.49527	min
Merge throttle time		0.120433	min
Median CPU usage		546.5	%
Total Young Gen GC		72.078	s
Total Old Gen GC		3.426	s
Index size		2.26661	GB
Totally written		30.083	GB

14 Chapter 3. Contents

Rally Documentation, Release 0.4.5

Heap used for segments		10.7148	MB
Heap used for doc values		0.0135536	MB
Heap used for terms		9.22965	MB
Heap used for points		0.78789	MB
Heap used for stored fields		0.683708	MB
Segment count		115	
Min Throughput	index-update	59210.4	docs/s
Median Throughput	index-update	65276.2	docs/s
Max Throughput	index-update	76516.6	docs/s
50.0th percentile latency	index-update	556.269	ms
90.0th percentile latency	index-update	852.779	ms
99.0th percentile latency	index-update	1854.31	ms
99.9th percentile latency	index-update	2972.96	ms
99.99th percentile latency	index-update	4106.91	ms
100th percentile latency	index-update	4542.84	ms
50.0th percentile service time	index-update	556.269	ms
90.0th percentile service time	index-update	852.779	ms
99.0th percentile service time	index-update	1854.31	ms
99.9th percentile service time	index-update	2972.96	ms
99.99th percentile service time	index-update	4106.91	ms
100th percentile service time	index-update	4542.84	ms
Min Throughput	force-merge	0.221067	ops/s
Median Throughput	force-merge	0.221067	ops/s
Max Throughput	force-merge	0.221067	ops/s
100th percentile latency	force-merge	4523.52	ms
100th percentile service time	force-merge	4523.52	ms

[INFO] SUCCESS (took 1624 seconds)

Note: You can save this report also to a file by using --report-file=/path/to/your/report.md and save
it as CSV with --report-format=csv.

What did Rally just do?

• It downloaded and started Elasticsearch 5.0.0

• It downloaded the relevant data for the geopoint track

• It ran the actual benchmark

• And finally it reported the results

If you are curious about the operations that Rally has run, please inspect the geopoint track specification or start to
write your own tracks. You can also configure Rally to store all data samples in Elasticsearch so you can analyze the
results with Kibana. Finally, you may want to change the Elasticsearch configuration.

3.5 Creating custom tracks

3.5.1 Overview

First of all we need to clarify what a benchmark is. Rally has a few assumptions built-in:

1. Rally sets up a fresh Elasticsearch cluster, i.e. the cluster is entirely under Rally’s control.

3.5. Creating custom tracks 15

https://github.com/elastic/rally-tracks/blob/5/geopoint/track.json

Rally Documentation, Release 0.4.5

2. The first step of the benchmark is to index all required documents via the bulk API. Rally will measure metrics
like indexing throughput in this phase.

3. An optional second step is to run one or more queries against the index. Rally will measure metrics like query
latency in this phase.

This is called a “track” in Rally. The most important attributes of a track are:

• One or more indices, each with one or more types

• The queries to issue

• Source URL of the benchmark data

• A list of steps to run, which we’ll call “challenge”, for example indexing data with a specific number of docu-
ments per bulk request or running searches for a defined number of iterations.

Separately from a track, we also have “cars” which define the settings of the benchmark candidate (Elasticsearch), like
how much heap memory to use, the number of nodes to start and so on. Rally comes with a set of default tracks and
cars which you can use for your own benchmarks (but you don’t have to).

Tracks are written as JSON files and are kept in a separate track repository, which is located at
https://github.com/elastic/rally-tracks. This repository has separate branches for different Elasticsearch versions and
Rally will check out the appropriate branch based on the command line parameter --distribution-version.
If the parameter is missing, Rally will assume by default that you are benchmarking the latest version of Elasticsearch
and will checkout the master branch of the track repository.

3.5.2 Example track

Let’s create an example track step by step. First of all, we need some data. There are a lot of public data sets available
which are interesting for new benchmarks and we also have a backlog of benchmarks to add.

Geonames provides geo data under a creative commons license. We will download allCountries.zip (around 300MB),
extract it and inspect allCountries.txt.

You will note that the file is tab-delimited but we need JSON to bulk-index data with Elasticsearch. So we can use a
small script to do the conversion for us:

import json
import csv

cols = (('geonameid', 'int'),
('name', 'string'),
('asciiname', 'string'),
('alternatenames', 'string'),
('latitude', 'double'),
('longitude', 'double'),
('feature_class', 'string'),
('feature_code', 'string'),
('country_code', 'string'),
('cc2', 'string'),
('admin1_code', 'string'),
('admin2_code', 'string'),
('admin3_code', 'string'),
('admin4_code', 'string'),
('population', 'long'),
('elevation', 'int'),
('dem', 'string'),
('timezone', 'string'))

16 Chapter 3. Contents

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks/issues
http://www.geonames.org/
http://creativecommons.org/licenses/by/3.0/
http://download.geonames.org/export/dump/allCountries.zip

Rally Documentation, Release 0.4.5

with open('allCountries.txt') as f:
while True:
line = f.readline()
if line == '':

break
tup = line.strip().split('\t')
d = {}
for i in range(len(cols)):

name, type = cols[i]
if tup[i] != '':

if type in ('int', 'long'):
d[name] = int(tup[i])

elif type == 'double':
d[name] = float(tup[i])

else:
d[name] = tup[i]

print(json.dumps(d))

We can invoke the script with python3 toJSON.py > documents.json.

Next we need to compress the JSON file with bzip2 -9 -c documents.json >
documents.json.bz2. Upload the data file to a place where it is publicly available. We choose
http://benchmarks.elastic.co/corpora/geonames for this example.

For initial local testing you can place the data file in Rally’s data directory, which is located in
~/.rally/benchmarks/data. For this example you need to place the data for the “geonames” track in
~/.rally/benchmarks/data/geonames so Rally can pick it up. Additionally, you have to specify the
--offline option when running Rally so it does not try to download any benchmark data.

Next we need a mapping file for our documents. For details on how to write a mapping file, see the Elasticsearch
documentation on mappings and look at the example mapping file. Place the mapping file in your rally-tracks
repository in a dedicated folder. This repository is located in ~/.rally/benchmarks/tracks/default and
we place the mapping file in ~/.rally/benchmarks/tracks/default/geonames for this track.

The track repository is managed by git, so ensure that you are on the master branch by running git checkout
master. Then add a new JSON file right next to the mapping file. The file has to be called “track.json” and is the
actual track specification

{
"meta": {
"short-description": "Standard benchmark in Rally (8.6M POIs from Geonames)",
"description": "This test indexes 8.6M documents (POIs from Geonames, total 2.8 GB json) using 8 client threads and 5000 docs per bulk request against Elasticsearch",
"data-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames"

},
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json.bz2",
"document-count": 8647880,
"compressed-bytes": 197857614,
"uncompressed-bytes": 2790927196

}
]

}

3.5. Creating custom tracks 17

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://github.com/elastic/rally-tracks/blob/master/geonames/mappings.json

Rally Documentation, Release 0.4.5

],
"operations": [
{

"name": "index",
"type": "index",
"bulk-size": 5000

},
{

"name": "force-merge",
"type": "force-merge"

},
{

"name": "query-match-all",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

},
],
"challenges": [
{

"name": "append-no-conflicts",
"description": "",
"index-settings": {

"index.number_of_replicas": 0
},
"schedule": [

{
"operation": "index",
"warmup-time-period": 120,
"clients": 8

},
{
"operation": "force-merge",
"clients": 1

},
{
"operation": "query-match-all",
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}
]

}

Finally, you need to commit your changes: git commit -a -m "Add geonames track".

A few things to note:

• Rally assumes that the challenge that should be run by default is called “append-no-conflicts”. If you want to
run a different challenge, provide the command line option --challenge=YOUR_CHALLENGE_NAME.

• You can add as many queries as you want. We use the official Python Elasticsearch client to issue queries.

• The numbers below the types property are needed to verify integrity and provide progress reports.

18 Chapter 3. Contents

http://elasticsearch-py.readthedocs.org/

Rally Documentation, Release 0.4.5

Note: We have defined a JSON schema for tracks which you can use to check how to define your track. You should
also check the tracks provided by Rally for inspiration.

When you invoke esrally list tracks, the new track should now appear:

dm@io:~ $ esrally list tracks

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Available tracks:

Name Description Challenges
---------- -- -------------------
geonames Standard benchmark in Rally (8.6M POIs from Geonames) append-no-conflicts

Congratulations, you have created your first track! You can test it with esrally --track=geonames
--offline (or whatever the name of your track is) and run specific challenges with esrally
--track=geonames --challenge=append-fast-with-conflicts --offline.

If you want to share your track with the community, please read on.

3.5.3 How to contribute a track

First of all, please read Rally’s contributors guide.

If you want to contribute your track, follow these steps:

1. Create a track JSON file and mapping files as described above and place them in a separate folder in the
rally-tracks repository. Please also add a README file in this folder which contains licensing infor-
mation (respecting the licensing terms of the source data). Note that pull requests for tracks without a license
cannot be accepted.

2. Upload the associated data so they can be publicly downloaded via HTTP. The data should be compressed either
as .bz2 (recommended) or as .zip.

3. Create a pull request in the rally-tracks Github repo.

3.5.4 Advanced topics

Template Language

Rally uses Jinja2 as template language. This allows you to use Jinja2 expressions in track files.

Extension Points

Rally also provides a few extension points to Jinja2:

• now: This is a global variable that represents the current date and time when the template is evaluated by Rally.

• days_ago(): This is a filter that you can use for date calculations.

3.5. Creating custom tracks 19

https://github.com/elastic/rally/blob/master/esrally/resources/track-schema.json
https://github.com/elastic/rally/blob/master/CONTRIBUTING.md
https://github.com/elastic/rally-tracks
http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/templates/#filters

Rally Documentation, Release 0.4.5

You can find an example in the logging track:

{
"name": "range",
"index": "logs-*",
"type": "type",
"body": {

"query": {
"range": {
"@timestamp": {

"gte": "now-{{'15-05-1998' | days_ago(now)}}d/d",
"lt": "now/d"

}
}

}
}

}
}

The data set that is used in the logging track starts on 26-04-1998 but we want to ignore the first few days for this query,
so we start on 15-05-1998. The expression {{’15-05-1998’ | days_ago(now)}} yields the difference in
days between now and the fixed start date and allows us to benchmark time range queries relative to now with a
predetermined data set.

Custom parameter sources

Note: This is a rather new feature and the API may change! However, the effort to use custom parameter sources is
very low.

Consider the following operation definition:

{
"name": "term",
"operation-type": "search",
"body": {
"query": {

"term": {
"body": "physician"

}
}

}
}

This query is defined statically in the track specification but sometimes you may want to vary parameters, e.g. search
also for “mechanic” or “nurse”. In this case, you can write your own “parameter source” with a little bit of Python
code.

First, define the name of your parameter source in the operation definition:

{
"name": "term",
"operation-type": "search",
"param-source": "my-custom-term-param-source"
"professions": ["mechanic", "physician", "nurse"]

}

20 Chapter 3. Contents

Rally Documentation, Release 0.4.5

Rally will recognize the parameter source and looks then for a file track.py in the same directory as the corre-
sponding JSON file. This file contains the implementation of the parameter source:

import random

def random_profession(indices, params):
you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(params["professions"])

}
}

},
"index": None,
"type": None,
"use_request_cache": False

}

def register(registry):
registry.register_param_source("my-custom-term-param-source", random_profession)

The example above shows a simple case that is sufficient if the operation to which your parameter source is applied is
idempotent and it does not matter whether two clients execute the same operation.

The function random_profession is the actual parameter source. Rally will bind the name “my-custom-term-
param-source” to this function by calling register. register is called by Rally before the track is executed.

The parameter source function needs to declare the two parameters indices and params. indices contains all
indices of this track and params contains all parameters that have been defined in the operation definition in
track.json. We use it in the example to read the professions to choose.

If you need more control, you need to implement a class. The example above, implemented as a class looks as follows:

import random

class TermParamSource:
def __init__(self, indices, params):

self._indices = indices
self._params = params

def partition(self, partition_index, total_partitions):
return self

def size(self):
return 1

def params(self):
you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(self._params["professions"])

}
}

},

3.5. Creating custom tracks 21

Rally Documentation, Release 0.4.5

"index": None,
"type": None,
"use_request_cache": False

}

def register(registry):
registry.register_param_source("my-custom-term-param-source", TermParamSource)

Let’s walk through this code step by step:

• Note the method register where you need to bind the name in the track specification to your parameter
source implementation class similar to the simple example.

• The class TermParamSource is the actual parameter source and needs to fulfill a few requirements:

– It needs to have a constructor with the signature __init__(self, indices, params). You don’t
need to store these parameters if you don’t need them.

– partition(self, partition_index, total_partitions) is called by Rally to “assign”
the parameter source across multiple clients. Typically you can just return self but in certain cases you
need to do something more sophisticated. If each clients needs to act differently then you can provide
different parameter source instances here.

– size(self): This method is needed to help Rally provide a proper progress indication to users if you
use a warmup time period. For bulk indexing, this would return the number of bulks (for a given client).
As searches are typically executed with a pre-determined amount of iterations, just return 1 in this case.

– params(self): This method needs to return a dictionary with all parameters that the corresponding
“runner” expects. For the standard case, Rally provides most of these parameters as a convenience, but
here you need to define all of them yourself. This method will be invoked once for every iteration during
the race. We can see that we randomly select a profession from a list which will be then be executed by
the corresponding runner.

Note: Be aware that params(self) is called on a performance-critical path so don’t do anything in this method
that takes a lot of time (avoid any I/O). For searches, you should usually throttle throughput anyway and there it does
not matter that much but if the corresponding operation is run without throughput throttling, please double-check that
you did not introduce a bottleneck in the load test driver with your custom parameter source.

In the implementation of custom parameter sources you can access the Python standard API. Using any additional
libraries is not supported.

Custom runners

You cannot only define custom parameter sources but also custom runners. Runners execute an operation against
Elasticsearch. Out of the box, Rally supports the following operations:

• Bulk indexing

• Force merge

• Searches

• Index stats

• Nodes stats

22 Chapter 3. Contents

Rally Documentation, Release 0.4.5

If you want to use any other operation, you can define a custom runner. Consider, we want to use the percolate API
with an older version of Elasticsearch (note that it has been replaced by the percolate query in Elasticsearch 5.0). To
achieve this, we c

In track.json specify an operation with type “percolate” (you can choose this name freely):

{
"name": "percolator_with_content_google",
"operation-type": "percolate",
"body": {
"doc": {

"body": "google"
},
"track_scores": true

}
}

Then create a file track.py next to track.json and implement the following two functions:

def percolate(es, params):
es.percolate(

index="queries",
doc_type="content",
body=params["body"]

)

def register(registry):
registry.register_runner("percolate", percolate)

The function percolate is the actual runner and takes the following parameters:

• es, which is the Elasticsearch Python client

• params which is a dict of parameters provided by its corresponding parameter source. Treat this parameter as
read only and do not attempt to write to it.

This function can return either:

• Nothing at all. Then Rally will assume that by default 1 and "ops" (see below)

• A tuple of weight and a unit, which is usually 1 and "ops". If you run a bulk operation you might return
the bulk size here, for example in number of documents or in MB. Then you’d return for example (5000,
"docs") Rally will use these values to store throughput metrics.

• A dict with arbitrary keys. If the dict contains the key weight it is assumed to be numeric and chosen as
weight as defined above. The key unit is treated similarly. All other keys are added to the meta section of the
corresponding service time and latency metrics records.

Similar to a parameter source you also need to bind the name of your operation type to the function within register.

Note: You need to implement register just once and register all parameter sources and runners there.

Running tasks in parallel

Rally supports running tasks in parallel with the parallel element. Below you find a few examples that show how
it should be used:

In the simplest case, you let Rally decide the number of clients needed to run the parallel tasks:

3.5. Creating custom tracks 23

Rally Documentation, Release 0.4.5

{
"parallel": {

"warmup-iterations": 1000,
"iterations": 1000,
"tasks": [
{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200

},
{

"operation": "country_agg_uncached",
"target-throughput": 50

}
]

}
}

]
}

Rally will determine that four clients are needed to run each task in a dedicated client.

However, you can also explicitly limit the number of clients:

{
"parallel": {
"clients": 2,
"warmup-iterations": 1000,
"iterations": 1000,
"tasks": [

{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200

},
{

"operation": "country_agg_uncached",
"target-throughput": 50

}
]

}
}

This will run the four tasks with just two clients. You could also specify more clients than there are tasks but these
will then just idle.

24 Chapter 3. Contents

Rally Documentation, Release 0.4.5

You can also specify a number of clients on sub tasks explicitly (by default, one client is assumed per subtask). This
allows to define a weight for each client operation. Note that you need to define the number of clients also on the
parallel parent element, otherwise Rally would determine the number of totally needed clients again on its own:

{
"parallel": {
"clients": 3,
"warmup-iterations": 1000,
"iterations": 1000,
"tasks": [

{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200,
"clients": 2

},
{

"operation": "country_agg_uncached",
"target-throughput": 50

}
]

}
}

This will ensure that the phrase query will be executed by two clients. All other ones are executed by one client.

Warning: You cannot nest parallel tasks.

Custom Track Repositories

Rally provides a default track repository that is hosted on Github. You can also add your own track repositories
although this requires a bit of additional work. First of all, track repositories need to be managed by git. The reason
is that Rally can benchmark multiple versions of Elasticsearch and we use git branches in the track repository to
determine the best match for each track. The versioning scheme is as follows:

• The master branch needs to work with the latest master branch of Elasticsearch.

• All other branches need to match the version scheme of Elasticsearch, i.e. MAJOR.MINOR.PATCH-SUFFIX
where all parts except MAJOR are optional.

Rally implements a fallback logic so you don’t need to define a branch for each patch release of Elasticsearch. For
example:

• The branch 6.0.0-alpha1 will be chosen for the version 6.0.0-alpha1 of Elasticsearch.

• The branch 5 will be chosen for all versions for Elasticsearch with the major version 5, e.g. 5.0.0, 5.1.3
(provided there is no specific branch).

Rally tries to use the branch with the best match to the benchmarked version of Elasticsearch.

3.5. Creating custom tracks 25

https://github.com/elastic/rally-tracks

Rally Documentation, Release 0.4.5

Creating a new track repository

All track repositories are located in ~/.rally/benchmarks/tracks. If you want to add a dedicated track
repository, called private follow these steps:

cd ~/.rally/benchmarks/tracks
mkdir private
cd private
git init
add your track now
git commit -a -m "Initial commit"

If you also have a remote for this repository, open ~/.rally/rally.ini in your editor of choice and add the
following line in the section tracks, otherwise just skip this step:

private.url = <<URL_TO_YOUR_ORIGIN>>

Rally will then automatically update the local tracking branches before the benchmark starts.

You can now verify that everything works by listing all tracks in this track repository:

esrally list tracks --track-repository=private

This shows all tracks that are available on the master branch of this repository. Suppose you only created tracks
on the branch 2 because you’re interested in the performance of Elasticsearch 2.x, then you can specify also the
distribution version:

esrally list tracks --track-repository=private --distribution-version=2.0.0

Rally will follow the same branch fallback logic as described above.

Adding an already existing track repository

If you want to add a track repository that already exists, just open ~/.rally/rally.ini in your editor of choice
and add the following line in the section tracks:

your_repo_name.url = <<URL_TO_YOUR_ORIGIN>>

After you have added this line, have Rally list the tracks in this repository:

esrally list tracks --track-repository=your_repo_name

3.6 Cars

A rally “car” is a specific configuration of Elasticsearch. At the moment, Rally ships with a fixed set of cars that you
cannot change. You can list them with esrally list cars:

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Available cars:

26 Chapter 3. Contents

Rally Documentation, Release 0.4.5

Name

defaults
4gheap
two_nodes
verbose_iw

You can specify the car that Rally should use with e.g. --car=4gheap.

3.7 Frequently Asked Questions (FAQ)

3.7.1 A benchmark aborts with Couldn’t find a tar.gz distribution.
What’s the problem?

This error occurs when Rally cannot build an Elasticsearch distribution from source code. The most likely cause is
that there is some problem in the build setup.

To see what’s the problem, try building Elasticsearch yourself. First, find out where the source code is located (run
grep local.src.dir ~/.rally/rally.ini). Then change to this directory and run the following com-
mands:

gradle clean
gradle :distribution:tar:assemble

By that you are mimicking what Rally does. Fix any errors that show up here and then retry.

3.7.2 Where does Rally get the benchmark data from?

Rally comes with a set of tracks out of the box which we maintain in the rally-tracks repository on Github. This
repository contains the track descriptions. The actual data are stored as compressed files in an S3 bucket.

3.7.3 Will Rally destroy my existing indices?

First of all: Please (please, please) do NOT run Rally against your production cluster if you are just getting started
with it. You have been warned.

Depending on the track, Rally will delete and create one or more indices. For example, the geonames track specifies
that Rally should create an index named “geonames” and Rally will assume it can do to this index whatever it wants.
Specifically, Rally will check at the beginning of a race if the index “geonames” exists and delete it. After that it
creates a new empty “geonames” index and runs the benchmark. So if you benchmark against your own cluster (by
specifying the benchmark-only pipeline) and this cluster contains an index that is called “geonames” you will lose
(all) data if you run Rally against it. Rally will neither read nor write (or delete) any other index. So if you apply the
usual care nothing bad can happen.

3.7.4 Where and how long does Rally keep its data?

Rally stores a lot of data (this is just the nature of a benchmark) so you should keep an eye on disk usage. All data are
kept in ~/.rally and Rally does not implicitly delete them. These are the most important directories:

• ~/.rally/benchmarks/races: logs, telemetry data or even complete Elasticsearch installations includ-
ing the data directory if a benchmark failed. If you don’t need the logs anymore, you can safely wipe this
directory.

3.7. Frequently Asked Questions (FAQ) 27

https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks/blob/master/geonames/track.json#L9

Rally Documentation, Release 0.4.5

• ~/.rally/benchmarks/src: the Elasticsearch Github repository (only if you had Rally build Elastic-
search from sources at least once).

• ~/.rally/benchmarks/data: the benchmark data sets. This directory can get very huge (way more than
100 GB if you want to try all default tracks). You can delete the files in this directory but keep in mind that Rally
may needs to download them again.

• ~/.rally/benchmarks/distributions: Contains all downloaded Elasticsearch distributions.

There are a few more directories but the four above are the most disk-hogging ones.

3.7.5 Does Rally spy on me?

No. Rally does not collect or send any usage data and also the complete source code is open. We do value your
feedback a lot though and if you got any ideas for improvements, found a bug or have any other feedback, please head
over to Rally’s Discuss forum or raise an issue on Github.

3.7.6 Do I need an Internet connection?

You do NOT need Internet access on any node of your Elasticsearch cluster but the machine where you start Rally
needs an Internet connection to download track data sets and Elasticsearch distributions. After it has downloaded all
data, an Internet connection is not required anymore and you can specify --offline. If Rally detects no active
Internet connection, it will automatically enable offline mode and warn you.

As a workaround you can also download all data on a different machine and transfer it the the target machine but this
is not actively supported.

3.8 Telemetry Devices

You probably want to gain additional insights from a race. Therefore, we have added telemetry devices to Rally. If
you invoke esrally list telemetry, it will show which telemetry devices are available:

dm@io:Projects/rally ‹master*›$ esrally list telemetry

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Available telemetry devices:

Command Name Description
--------- --------------------- ---
jit JIT Compiler Profiler Enables JIT compiler logs.
gc GC log Enables GC logs.
jfr Flight Recorder Enables Java Flight Recorder (requires an Oracle JDK)
perf perf stat Reads CPU PMU counters (requires Linux and perf)

Keep in mind that each telemetry device may incur a runtime overhead which can skew results.

You can attach one or more of these telemetry devices to the benchmarked cluster. However, this only works if Rally
provisions the cluster (i.e. it does not work with --pipeline=benchmark-only).

28 Chapter 3. Contents

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally

Rally Documentation, Release 0.4.5

3.8.1 jfr

The jfr telemetry device enables the Java Flight Recorder on the benchmark candidate. Java Flight Recorder ships
only with Oracle JDK, so Rally assumes that Oracle JDK is used for benchmarking.

To enable jfr, invoke Rally with esrally --telemetry jfr. jfr will then write a flight recording file which
can be opened in Java Mission Control. Rally prints the location of the flight recording file on the command line.

Note: The licensing terms of Java flight recorder do not allow you to run it in production environments without a
valid license (for details, please refer to the Oracle Java SE Advanced & Suite Products page). However, running in a
QA environment is fine.

3.8.2 jit

The jit telemetry device enables JIT compiler logs for the benchmark candidate. If the HotSpot disassembler library
is available, the logs will also contain the disassembled JIT compiler output which can be used for low-level analysis.
We recommend to use JITWatch for analysis.

hsdis can be built for JDK 8 on Linux with (based on a description by Alex Blewitt):

curl -O -O -O -O https://raw.githubusercontent.com/dmlloyd/openjdk/jdk8u/jdk8u/hotspot/src/share/tools/hsdis/{hsdis.c,hsdis.h,Makefile,README}
mkdir -p build/binutils
curl http://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.gz | tar --strip-components=1 -C build/binutils -z -x -f -
make BINUTILS=build/binutils ARCH=amd64

After it has been built, the binary needs to be copied to the JDK directory (see README of hsdis for details).

3.8.3 gc

The gc telemetry device enables GC logs for the benchmark candidate. You can use tools like GCViewer to analyze
the GC logs.

3.8. Telemetry Devices 29

http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/index.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/overview/index.html
https://github.com/AdoptOpenJDK/jitwatch
http://alblue.bandlem.com/2016/09/javaone-hotspot.html
https://github.com/chewiebug/GCViewer

Rally Documentation, Release 0.4.5

3.8.4 perf

The perf telemetry device runs perf stat on each benchmarked node and writes the output to a log file. It can be
used to capture low-level CPU statistics. Note that the perf tool, which is only available on Linux, must be installed
before using this telemetry device.

3.9 Pipelines

A pipeline is a series of steps that are performed to get benchmark results. This is not intended to customize the actual
benchmark but rather what happens before and after a benchmark.

An example will clarify the concept: If you want to benchmark a binary distribution of Elasticsearch, Rally has to
download a distribution archive, decompress it, start Elasticsearch and then run the benchmark. However, if you want
to benchmark a source build of Elasticsearch, it first has to build a distribution with Gradle. So, in both cases, different
steps are involved and that’s what pipelines are for.

You can get a list of all pipelines with esrally list pipelines:

Available pipelines:

Name Description
----------------------- ---
from-distribution Downloads an Elasticsearch distribution, provisions it, runs a benchmark and reports results.
from-sources-complete Builds and provisions Elasticsearch, runs a benchmark and reports results.
benchmark-only Assumes an already running Elasticsearch instance, runs a benchmark and reports results
from-sources-skip-build Provisions Elasticsearch (skips the build), runs a benchmark and reports results.

3.9.1 benchmark-only

This is intended if you want to provision a cluster by yourself. Do not use this pipeline unless you are absolutely sure
you need to. As Rally has not provisioned the cluster, results are not easily reproducable and it also cannot gather a
lot of metrics (like CPU usage).

To benchmark a cluster, you also have to specify the hosts to connect to. An example invocation:

esrally --pipeline=benchmark-only --target-hosts=search-node-a.intranet.acme.com:9200,search-node-b.intranet.acme.com:9200

3.9.2 from-distribution

This pipeline allows to benchmark an official Elasticsearch distribution which will be automatically downloaded by
Rally. The earliest supported version is Elasticsearch 1.7.0. An example invocation:

esrally --pipeline=from-distribution --distribution-version=1.7.5

The version numbers have to match the name in the download URL path.

You can also benchmark Elasticsearch snapshot versions by specifying the snapshot repository:

esrally --pipeline=from-distribution --distribution-version=5.0.0-SNAPSHOT --distribution-repository=snapshot

However, this feature is mainly intended for continuous integration environments and by default you should just
benchmark official distributions.

30 Chapter 3. Contents

Rally Documentation, Release 0.4.5

Note: This pipeline is just mentioned for completeness but Rally will autoselect it for you. All you need to do is to
define the --distribution-version flag.

3.9.3 from-sources-complete

You should use this pipeline when you want to build and benchmark Elasticsearch from sources. Remember that you
also need to install git and Gradle before and Rally needs to be configured for building for sources. If that’s not the
case you’ll get an error and have to run esrally configure first. An example invocation:

esrally --pipeline=from-sources-complete --revision=latest

You have to specify a revision.

Note: This pipeline is just mentioned for completeness but Rally will autoselect it for you. All you need to do is to
define the --revision flag.

3.9.4 from-sources-skip-build

This pipeline is similar to from-sources-complete except that it assumes you have built the binary once. It
saves time if you want to run a benchmark twice for the exact same version of Elasticsearch. Obviously it doesn’t
make sense to provide a revision: It is always the previously built revision. An example invocation:

esrally --pipeline=from-sources-skip-build

3.10 Metrics

3.10.1 Metrics Records

At the end of a race, Rally stores all metrics records in its metrics store, which is a dedicated Elasticsearch cluster.

Here is a typical metrics record:

{
"environment": "nightly",
"track": "geonames",
"challenge": "append-no-conflicts",
"car": "defaults",
"sample-type": "normal",
"trial-timestamp": "20160421T042749Z",
"@timestamp": 1461213093093,
"relative-time": 10507328,
"name": "throughput",
"value": 27385,
"unit": "docs/s",
"operation": "index-append-no-conflicts",
"operation-type": "Index",
"lap": 1,
"meta": {

"cpu_physical_cores": 36,
"cpu_logical_cores": 72,

3.10. Metrics 31

Rally Documentation, Release 0.4.5

"cpu_model": "Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz",
"os_name": "Linux",
"os_version": "3.19.0-21-generic",
"host_name": "beast2",
"node_name": "rally-node0",
"source_revision": "a6c0a81",
"distribution_version": "5.0.0-SNAPSHOT",
"tag_reference": "Github ticket 1234",

}
}

As you can see, we do not only store the metrics name and its value but lots of meta-information. This allows you to
create different visualizations and reports in Kibana.

Below we describe each field in more detail.

environment

The environment describes the origin of a metric record. You define this value in the initial configuration of Rally. The
intention is to clearly separate different benchmarking environments but still allow to store them in the same index.

track, challenge, car

This is the track, challenge and car for which the metrics record has been produced.

sample-type

Rally runs warmup trials but records all samples. Normally, we are just interested in “normal” samples but for a full
picture we might want to look also at “warmup” samples.

trial-timestamp

A constant timestamp (always in UTC) that is determined when Rally is invoked. It is intended to group all samples
of a benchmark trial.

@timestamp

The timestamp in milliseconds since epoch determined when the sample was taken.

relative-time

The relative time in microseconds since the start of the benchmark. This is useful for comparing time-series graphs
over multiple trials, e.g. you might want to compare the indexing throughput over time across multiple benchmark
trials. Obviously, they should always start at the same (relative) point in time and absolute timestamps are useless for
that.

name, value, unit

This is the actual metric name and value with an optional unit (counter metrics don’t have a unit). Depending on the
nature of a metric, it is either sampled periodically by Rally, e.g. the CPU utilization or query latency or just measured
once like the final size of the index.

32 Chapter 3. Contents

Rally Documentation, Release 0.4.5

operation, operation-type

operation is the name of the operation (as specified in the track file) that ran when this metric has been gathered.
It will only be set for metrics with name latency and throughput.

operation-type is the more abstract type of an operation. During a race, multiple queries may be issued which
are different operation‘‘s but they all have the same ‘‘operation-type (Search). For some
metrics, only the operation type matters, e.g. it does not make any sense to attribute the CPU usage to an individual
query but instead attribute it just to the operation type.

lap

The lap number in which this metric was gathered. Laps start at 1. See the command line reference for more info on
laps.

meta

Rally captures also some meta information for each metric record:

• CPU info: number of physical and logical cores and also the model name

• OS info: OS name and version

• Host name

• Node name: If Rally provisions the cluster, it will choose a unique name for each node.

• Source revision: We always record the git hash of the version of Elasticsearch that is benchmarked. This is even
done if you benchmark an official binary release.

• Distribution version: We always record the distribution version of Elasticsearch that is benchmarked. This is
even done if you benchmark a source release.

• Custom tag: You can define one custom tag with the command line flag --user-tag. The tag is prefixed by
tag_ in order to avoid accidental clashes with Rally internal tags.

• Operation-specific: The optional substructure operation contains additional information depending on the
type of operation. For bulk requests, this may be the number of documents or for searches the number of hits.

Note that depending on the “level” of a metric record, certain meta information might be missing. It makes no sense to
record host level meta info for a cluster wide metric record, like a query latency (as it cannot be attributed to a single
node).

3.10.2 Metric Keys

Rally stores the following metrics:

• latency: Time period between submission of a request and receiving the complete response. It also includes
wait time, i.e. the time the request spends waiting until it is ready to be serviced by Elasticsearch.

• service_time Time period between start of request processing and receiving the complete response. This
metric can easily be mixed up with latency but does not include waiting time. This is what most load testing
tools refer to as “latency” (although it is incorrect).

• throughput: Number of operations that Elasticsearch can perform within a certain time period, usually per
second.

• merge_parts_total_time_*: Different merge times as reported by Lucene. Only available if Lucene
index writer trace logging is enabled.

3.10. Metrics 33

Rally Documentation, Release 0.4.5

• merge_parts_total_docs_*: See merge_parts_total_time_*

• disk_io_write_bytes: number of bytes that have been written to disk during the benchmark. On Linux
this metric reports only the bytes that have been written by Elasticsearch, on Mac OS X it reports the number of
bytes written by all processes.

• disk_io_read_bytes: number of bytes that have been read from disk during the benchmark. The same
caveats apply on Mac OS X as for disk_io_write_bytes.

• cpu_utilization_1s: CPU usage in percent of the Elasticsearch process based on a one second sample
period. The maximum value is N * 100% where N is the number of CPU cores available.

• node_total_old_gen_gc_time: The total runtime of the old generation garbage collector across the
whole cluster as reported by the node stats API.

• node_total_young_gen_gc_time: The total runtime of the young generation garbage collector across
the whole cluster as reported by the node stats API.

• segments_count: Total number of segments as reported by the indices stats API.

• segments_memory_in_bytes: Number of bytes used for segments as reported by the indices stats API.

• segments_doc_values_memory_in_bytes: Number of bytes used for doc values as reported by the
indices stats API.

• segments_stored_fields_memory_in_bytes: Number of bytes used for stored fields as reported by
the indices stats API.

• segments_terms_memory_in_bytes: Number of bytes used for terms as reported by the indices stats
API.

• segments_norms_memory_in_bytes: Number of bytes used for norms as reported by the indices stats
API.

• segments_points_memory_in_bytes: Number of bytes used for points as reported by the indices stats
API.

• merges_total_time: Total runtime of merges as reported by the indices stats API. Note that this is not
Wall clock time (i.e. if M merge threads ran for N minutes, we will report M * N minutes, not N minutes).

• merges_total_throttled_time: Total time within merges have been throttled as reported by the indices
stats API. Note that this is not Wall clock time.

• indexing_total_time: Total time used for indexing as reported by the indices stats API. Note that this is
not Wall clock time.

• refresh_total_time: Total time used for index refresh as reported by the indices stats API. Note that this
is not Wall clock time.

• flush_total_time: Total time used for index flush as reported by the indices stats API. Note that this is
not Wall clock time.

• final_index_size_bytes: Final resulting index size after the benchmark.

3.11 Tournaments

Warning: If you want to use tournaments, then Rally requires a dedicated metrics store as it needs to store
data across multiple races. So ensure to run esrally configure --advanced-config first. For details
please see the configuration help page.

34 Chapter 3. Contents

Rally Documentation, Release 0.4.5

Suppose, we want to analyze the impact of a performance improvement. First, we need a baseline measurement. We
can use the command line parameter --user-tag to provide a key-value pair to document the intent of a race.
After we’ve run both races, we want to know about the performance impact of a change. With Rally we can analyze
differences of two given races easily. First of all, we need to find two races to compare by issuing esrally list
races:

dm@io:~ $ esrally list races

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Recent races:

Race Timestamp Track Challenge Car User Tag
---------------- ------- ------------------- -------- ------------------------------
20160518T122341Z pmc append-no-conflicts defaults intention:reduce_alloc_1234
20160518T112057Z pmc append-no-conflicts defaults intention:baseline_github_1234
20160518T101957Z pmc append-no-conflicts defaults

We can see that the user tag helps us to recognize races. We want to compare the two most recent races and have to
provide the two race timestamps in the next step:

dm@io:~ $ esrally compare --baseline=20160518T112057Z --contender=20160518T112341Z

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Comparing baseline
Race timestamp: 2016-05-18 11:20:57
Challenge: append-no-conflicts
Car: defaults

with contender
Race timestamp: 2016-05-18 12:23:41
Challenge: append-no-conflicts
Car: defaults

--
_______ __ _____

/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

Metric Baseline Contender Diff
-- ---------- ----------- -----------------

Min Indexing Throughput [docs/s] 19501 19118 -383.00000
Median Indexing Throughput [docs/s] 20232 19927.5 -304.45833

Max Indexing Throughput [docs/s] 21172 20849 -323.00000
Indexing time [min] 55.7989 56.335 +0.53603

Merge time [min] 12.9766 13.3115 +0.33495
Refresh time [min] 5.20067 5.20097 +0.00030

3.11. Tournaments 35

Rally Documentation, Release 0.4.5

Flush time [min] 0.0648667 0.0681833 +0.00332
Merge throttle time [min] 0.796417 0.879267 +0.08285

Query latency term (50.0 percentile) [ms] 2.10049 2.15421 +0.05372
Query latency term (90.0 percentile) [ms] 2.77537 2.84168 +0.06630

Query latency term (100.0 percentile) [ms] 4.52081 5.15368 +0.63287
Query latency country_agg (50.0 percentile) [ms] 112.049 110.385 -1.66392
Query latency country_agg (90.0 percentile) [ms] 128.426 124.005 -4.42138

Query latency country_agg (100.0 percentile) [ms] 155.989 133.797 -22.19185
Query latency scroll (50.0 percentile) [ms] 16.1226 14.4974 -1.62519
Query latency scroll (90.0 percentile) [ms] 17.2383 15.4079 -1.83043

Query latency scroll (100.0 percentile) [ms] 18.8419 18.4241 -0.41784
Query latency country_agg_cached (50.0 percentile) [ms] 1.70223 1.64502 -0.05721
Query latency country_agg_cached (90.0 percentile) [ms] 2.34819 2.04318 -0.30500

Query latency country_agg_cached (100.0 percentile) [ms] 3.42547 2.86814 -0.55732
Query latency default (50.0 percentile) [ms] 5.89058 5.83409 -0.05648
Query latency default (90.0 percentile) [ms] 6.71282 6.64662 -0.06620

Query latency default (100.0 percentile) [ms] 7.65307 7.3701 -0.28297
Query latency phrase (50.0 percentile) [ms] 1.82687 1.83193 +0.00506
Query latency phrase (90.0 percentile) [ms] 2.63714 2.46286 -0.17428

Query latency phrase (100.0 percentile) [ms] 5.39892 4.22367 -1.17525
Median CPU usage (index) [%] 668.025 679.15 +11.12499
Median CPU usage (stats) [%] 143.75 162.4 +18.64999

Median CPU usage (search) [%] 223.1 229.2 +6.10000
Total Young Gen GC [s] 39.447 40.456 +1.00900

Total Old Gen GC [s] 7.108 7.703 +0.59500
Index size [GB] 3.25475 3.25098 -0.00377

Totally written [GB] 17.8434 18.3143 +0.47083
Heap used for segments [MB] 21.7504 21.5901 -0.16037

Heap used for doc values [MB] 0.16436 0.13905 -0.02531
Heap used for terms [MB] 20.0293 19.9159 -0.11345
Heap used for norms [MB] 0.105469 0.0935669 -0.01190

Heap used for points [MB] 0.773487 0.772155 -0.00133
Heap used for points [MB] 0.677795 0.669426 -0.00837

Segment count 136 121 -15.00000
Indices Stats(90.0 percentile) [ms] 3.16053 3.21023 +0.04969
Indices Stats(99.0 percentile) [ms] 5.29526 3.94132 -1.35393

Indices Stats(100.0 percentile) [ms] 5.64971 7.02374 +1.37403
Nodes Stats(90.0 percentile) [ms] 3.19611 3.15251 -0.04360
Nodes Stats(99.0 percentile) [ms] 4.44111 4.87003 +0.42892

Nodes Stats(100.0 percentile) [ms] 5.22527 5.66977 +0.44450

3.12 Recipes

3.12.1 Benchmarking an existing cluster

Warning: If you are just getting started with Rally and don’t understand how it works, please do NOT run it
against any production or production-like cluster. Besides, benchmarks should be executed in a dedicated environ-
ment anyway where no additional traffic skews results.

Note: We assume in this recipe, that Rally is already properly configured.

Consider the following configuration: You have an existing benchmarking cluster, that consists of three Elasticsearch

36 Chapter 3. Contents

Rally Documentation, Release 0.4.5

nodes running on 10.5.5.10, 10.5.5.11, 10.5.5.12. You’ve setup the cluster yourself and want to benchmark
it with Rally. Rally is installed on 10.5.5.5.

First of all, we need to decide on a track. So, we run esrally list tracks:

Name Description Challenges
---------- -- ---
geonames Standard benchmark in Rally (8.6M POIs from Geonames) append-no-conflicts,append-no-conflicts-index-only,append-no-conflicts-index-only-1-replica,append-fast-no-conflicts,append-fast-with-conflicts
geopoint 60.8M POIs from PlanetOSM append-no-conflicts,append-no-conflicts-index-only,append-no-conflicts-index-only-1-replica,append-fast-no-conflicts,append-fast-with-conflicts
logging Logging benchmark append-no-conflicts,append-no-conflicts-index-only,append-no-conflicts-index-only-1-replica,append-fast-no-conflicts,append-fast-with-conflicts
nyc_taxis Trip records completed in yellow and green taxis in New York in 2015 append-no-conflicts,append-no-conflicts-index-only,append-no-conflicts-index-only-1-replica
percolator Percolator benchmark based on 2M AOL queries append-no-conflicts
pmc Full text benchmark containing 574.199 papers from PMC append-no-conflicts,append-no-conflicts-index-only,append-no-conflicts-index-only-1-replica,append-fast-no-conflicts,append-fast-with-conflicts

We’re interested in a full text benchmark, so we’ll choose to run pmc. If you have your own data that you want to use
for benchmarks, then please create your own track instead; the metrics you’ll gather which be representative and much
more useful than some default track.

Next, we need to know which machines to target which is easy as we can see that from the diagram above.

Finally we need to check which pipeline to use. For this case, the benchmark-only pipeline is suitable as we don’t
want Rally to provision the cluster for us.

Now we can invoke Rally:

esrally --track=pmc --target-hosts=10.5.5.10:9200,10.5.5.11:9200,10.5.5.12:9200 --pipeline=benchmark-only

If you have X-Pack Security enabled, then you’ll also need to specify another parameter to use https and to pass
credentials:

esrally --track=pmc --target-hosts=10.5.5.10:9243,10.5.5.11:9243,10.5.5.12:9243 --pipeline=benchmark-only --client-options="basic_auth_user:'elastic',basic_auth_password:'changeme'"

3.13 Command Line Reference

You can control Rally with subcommands and command line flags:

• Subcommands determine which task Rally performs.

• Command line flags are used to change Rally’s behavior but not all command line flags can be used for each sub-
command. To find out which command line flags are supported by a specific subcommand, just run esrally
<<subcommand>> --help.

3.13. Command Line Reference 37

https://www.elastic.co/products/x-pack/security

Rally Documentation, Release 0.4.5

3.13.1 Subcommands

race

The race subcommand is used to actually run a benchmark. It is the default one and chosen implicitly if none is
given.

list

The list subcommand is used to list different configuration options:

• telemetry: Will show all telemetry devices that are supported by Rally.

• tracks: Will show all tracks that are supported by Rally. As this may depend on the Elastic-
search version that you want to benchmark, you can specify --distribution-version and also
--distribution-repository as additional options.

• pipelines: Will show all pipelines that are supported by Rally.

• races: Will show all races that are currently stored. This is only needed for the tournament mode and it will also
only work if you have setup Rally so it supports tournaments.

• cars: Will show all cars that are supported by Rally (i.e. Elasticsearch configurations).

To list a specific configuration option, place it after the list subcommand. For example, esrally list
pipelines will list all pipelines known to Rally.

compare

This subcommand is needed for tournament mode and its usage is described there.

configure

This subcommand is needed to configure Rally. It is implicitly chosen if you start Rally for the first time but you can
rerun this command at any time.

3.13.2 Command Line Flags

track-repository

Selects the track repository that Rally should use to resolve tracks. By default the default track repository is used,
which is available on Github. See adding tracks on how to add your own track repositories.

track

Selects the track that Rally should run. By default the geonames track is run. For more details on how tracks work,
see adding tracks.

challenge

A track consists of one or more challenges. With this flag you can specify which challenge should be run.

38 Chapter 3. Contents

https://github.com/elastic/rally-tracks

Rally Documentation, Release 0.4.5

car

A car defines the Elasticsearch configuration that will be used for the benchmark.

pipeline

Selects the pipeline that Rally should run.

Rally can autodetect the pipeline in most cases. If you specify --distribution-version it will auto-select the
pipeline from-distribution otherwise it will use from-sources-complete.

laps

Allows to run the benchmark for multiple laps (defaults to 1 lap). Each lap corresponds to one full execution of a track
but note that the benchmark candidate is not restarted between laps.

telemetry

Activates the provided telemetry devices for this race.

Example

esrally --telemetry=jfr,jit

This activates Java flight recorder and the JIT compiler telemetry devices.

revision

If you actively develop Elasticsearch and want to benchmark a source build of Elasticsearch (which will Rally create
for you), you can specify the git revision of Elasticsearch that you want to benchmark. But note that Rally does only
support Gradle as build tool which effectively means that it will only support this for Elasticsearch 5.0 or better. The
default value is current.

You can specify the revision in different formats:

• --revision=latest: Use the HEAD revision from origin/master.

• --revision=current: Use the current revision (i.e. don’t alter the local source tree).

• --revision=abc123: Where abc123 is some git revision hash.

• --revision=@2013-07-27T10:37:00Z: Determines the revision that is closest to the provided date.
Rally logs to which git revision hash the date has been resolved and if you use Elasticsearch as metrics store
(instead of the default in-memory one), each metric record will contain the git revision hash also in the meta-data
section.

Supported date format: If you specify a date, it has to be ISO-8601 conformant and must start with an @ sign to make
it easier for Rally to determine that you actually mean a date.

distribution-version

If you want to benchmark a binary distribution, you can specify the version here.

Example

3.13. Command Line Reference 39

Rally Documentation, Release 0.4.5

esrally --distribution-version=2.3.3

Rally will then benchmark the official Elasticsearch 2.3.3 distribution.

distribution-repository

Rally does not only support benchmarking official distributions but can also benchmark snapshot builds. This is option
is really just intended for our benchmarks that are run in continuous integration but if you want to, you can use it too.
The only supported values are release (default) and snapshot.

Example

esrally --distribution-repository=snapshot --distribution-version=6.0.0-SNAPSHOT

This will benchmark the latest 6.0.0 snapshot build of Elasticsearch that is available in the Sonatype repository.

report-format

The command line reporter in Rally displays a table with key metrics after a race. With this option you can specify
whether this table should be in markdown format (default) or csv.

report-file

By default, the command line reporter will print the results only on standard output, but can also write it to a file.

Example

esrally --report-format=csv --report-file=~/benchmarks/result.csv

client-options

With this option you can customize Rally’s internal Elasticsearch client.

It accepts a list of comma-separated key-value pairs. The key-value pairs have to be delimited by a colon. These
options are passed directly to the Elasticsearch Python client API. See their documentation on a list of supported
options.

We support the following data types:

• Strings: Have to be enclosed in single quotes. Example: ca_certs:’/path/to/CA_certs’

• Numbers: There is nothing special about numbers. Example: sniffer_timeout:60

• Booleans: Specify either true or false. Example: use_ssl:true

In addition to the options, supported by the Elasticsearch client, it is also possible to enable HTTP compression by
specifying compressed:true

Default value: timeout:60000,request_timeout:60000

Warning: If you provide your own client options, the default value will not be magically merged. You have to
specify all client options explicitly. The only exceptions to this rule is ca_cert (see below).

Examples

Here are a few common examples:

40 Chapter 3. Contents

https://elasticsearch-benchmarks.elastic.co/
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch

Rally Documentation, Release 0.4.5

• Enable HTTP compression: --client-options="compressed:true"

• Enable SSL (if you have Shield installed): --client-options="use_ssl:true,verify_certs:true".
Note that you don’t need to set ca_cert (which defines the path to the root certificates). Rally does this
automatically for you.

• Enable basic authentication: --client-options="basic_auth_user:’user’,basic_auth_password:’password’".
Please avoid the characters ’, , and : in user name and password as Rally’s parsing of these options is currently
really simple and there is no possibility to escape characters.

target-hosts

If you run the benchmark-only pipeline, then you can specify a comma-delimited list of hosts:port pairs to which
Rally should connect. The default value is 127.0.0.1:9200.

Example

esrally --pipeline=benchmark-only --target-hosts=10.17.0.5:9200,10.17.0.6:9200

This will run the benchmark against the hosts 10.17.0.5 and 10.17.0.6 on port 9200. See client-options if you
use Shield and need to authenticate or Rally should use https.

quiet

Suppresses some output on the command line.

offline

Tells Rally that it should assume it has no connection to the Internet when checking for track data. The default value
is false. Note that Rally will only assume this for tracks but not for anything else, e.g. it will still try to download
Elasticsearch distributions that are not locally cached or fetch the Elasticsearch source tree.

preserve-install

Rally usually installs and launches an Elasticsearch cluster internally and wipes the entire directory after the benchmark
is done. Sometimes you want to keep this cluster including all data after the benchmark has finished and that’s what
you can do with this flag. Note that depending on the track that has been run, the cluster can eat up a very significant
amount of disk space (at least dozens of GB). The default value is configurable in the advanced configuration but
usually false.

Note: This option does only affect clusters that are provisioned by Rally. More specifically, if you use the pipeline
benchmark-only, this option is ineffective as Rally does not provision a cluster in this case.

advanced-config

This flag determines whether Rally should present additional (advanced) configuration options. The default value is
false.

Example

esrally configure --advanced-config

3.13. Command Line Reference 41

Rally Documentation, Release 0.4.5

assume-defaults

This flag determines whether Rally should automatically accept all values for configuration options that provide a
default. This is mainly intended to configure Rally automatically in CI runs. The default value is false.

Example

esrally configure --assume-defaults=true

user-tag

This is only relevant when you want to run tournaments. You can use this flag to attach an arbitrary text to the meta-
data of each metric record and also the corresponding race. This will help you to recognize a race when you run
esrally list races as you don’t need to remember the concrete timestamp on which a race has been run but
can instead use your own descriptive names.

Example

esrally --user-tag=github-issue-1234-baseline

When you run esrally list races, this will show up again:

dm@io:~ $ esrally list races

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Recent races:

Race Timestamp Track Challenge Car User Tag
---------------- ------- ------------------- -------- ------------------------------
20160518T122341Z pmc append-no-conflicts defaults github-issue-1234-baseline

This will help you recognize a specific race when running esrally compare.

3.14 Developing Rally

3.14.1 Prerequisites

Please ensure that the following packages are installed before installing Rally in development mode:

• Python 3.4 or better available as python3 on the path (verify with: python3 --version which should print
Python 3.4.0 (or higher))

• pip3 available on the path (verify with pip3 --version)

• JDK 8

• git 1.9 or better

• Gradle 2.13

Rally does not support Windows and is only actively tested on Mac OS X and Linux.

42 Chapter 3. Contents

Rally Documentation, Release 0.4.5

3.14.2 Installation Instructions for Development

git clone https://github.com/elastic/rally.git
cd rally
./rally

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Please check the installation instructions of psutil in this case. Keep in mind that Rally
is based on Python 3 and you need to install the Python 3 header files instead of the Python 2 header files on Linux.

Configuring Rally

Before we can run our first benchmark, we have to configure Rally. Just invoke ./rally configure and Rally
will automatically detect that its configuration file is missing and prompt you for some values and write them to
~/.rally/rally.ini. After you’ve configured Rally, it will exit.

For more information see configuration help page.

3.14.3 Key Components of Rally

To get a rough understanding of Rally, it makes sense to get to know its key components:

• Race Control: is responsible for proper execution of the race. It sets up all components and acts as a high-level
controller.

• Mechanic: can build and prepare a benchmark candidate for the race. It checks out the source, builds Elastic-
search, provisions and starts the cluster.

• Track: is a concrete benchmarking scenario, e.g. the logging benchmark. It defines the data set to use.

• Challenge: is the specification on what benchmarks should be run and its configuration (e.g. index, then run a
search benchmark with 1000 iterations)

• Car: is a concrete system configuration for a benchmark, e.g. an Elasticsearch single-node cluster with default
settings.

• Driver: drives the race, i.e. it is executing the benchmark according to the track specification.

• Reporter: A reporter tells us how the race went (currently only after the fact).

There is a dedicated tutorial on how to add new tracks to Rally.

3.14.4 How to contribute code

First of all, please read the contributors guide.

We strive to be PEP-8 compliant but don’t follow it to the letter.

3.15 Glossary

track A track is the description of one ore more benchmarking scenarios with a specific document corpus. It defines
for example the involved indices, data files and which operations are invoked. List the available tracks with
esrally list tracks. Although Rally ships with some tracks out of the box, you should usually create
your own track based on your own data.

3.15. Glossary 43

https://github.com/giampaolo/psutil/blob/master/INSTALL.rst
https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 0.4.5

challenge A challenge describes one benchmarking scenario, for example indexing documents at maximum through-
put with 4 clients while issuing term and phrase queries from another two clients rate-limited at 10 queries
per second each. It is always specified in the context of a track. See the available challenges by listing the
corresponding tracks with esrally list tracks.

car A car is a specific configuration of an Elasticsearch cluster that is benchmarked, for example the out-of-the-box
configuration, a configuration with a specific heap size or a custom logging configuration. List the available cars
with esrally list cars.

telemetry Telemetry is used in Rally to gather metrics about the car, for example CPU usage or index size.

race A race is one invocation of the Rally binary. Another name for that is one “benchmarking trial”. During a race,
Rally runs one challenge on a track with the given car.

tournament A tournament is a comparison of two races. You can use Rally’s tournament mode for that.

44 Chapter 3. Contents

CHAPTER 4

License

This software is licensed under the Apache License, version 2 (“ALv2”), quoted below.

Copyright 2015-2016 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

45

https://www.elastic.co
http://www.apache.org/licenses/LICENSE-2.0

Rally Documentation, Release 0.4.5

46 Chapter 4. License

Index

C
car, 44
challenge, 44

R
race, 44

T
telemetry, 44
tournament, 44
track, 43

47

	Getting Help or Contributing to Rally
	Source Code
	Contents
	License

