
Rally Documentation
Release 1.4.0

Daniel Mitterdorfer

Jan 15, 2020

Getting Started with Rally

1 Getting Help or Contributing to Rally 3

2 Source Code 5
2.1 Quickstart . 5
2.2 Installation . 8
2.3 Running Rally with Docker . 11
2.4 Configuration . 15
2.5 Run a Benchmark: Races . 19
2.6 Compare Results: Tournaments . 22
2.7 Setting up a Cluster . 25
2.8 Tips and Tricks . 27
2.9 Define Custom Workloads: Tracks . 33
2.10 Developing Rally . 53
2.11 Elasticsearch Version Support . 55
2.12 Command Line Reference . 55
2.13 Offline Usage . 72
2.14 Track Reference . 73
2.15 Configure Elasticsearch: Cars . 103
2.16 Using Elasticsearch Plugins . 107
2.17 Telemetry Devices . 113
2.18 Rally Daemon . 117
2.19 Pipelines . 118
2.20 Metrics . 120
2.21 Summary Report . 124
2.22 Migration Guide . 128
2.23 Frequently Asked Questions (FAQ) . 140
2.24 Glossary . 142
2.25 Community Resources . 142

3 License 143

Index 145

i

ii

Rally Documentation, Release 1.4.0

You want to benchmark Elasticsearch? Then Rally is for you. It can help you with the following tasks:

• Setup and teardown of an Elasticsearch cluster for benchmarking

• Management of benchmark data and specifications even across Elasticsearch versions

• Running benchmarks and recording results

• Finding performance problems by attaching so-called telemetry devices

• Comparing performance results

We have also put considerable effort in Rally to ensure that benchmarking data are reproducible.

Getting Started with Rally 1

Rally Documentation, Release 1.4.0

2 Getting Started with Rally

CHAPTER 1

Getting Help or Contributing to Rally

• Use our Discuss forum to provide feedback or ask questions about Rally.

• See our contribution guide on guidelines for contributors.

3

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 1.4.0

4 Chapter 1. Getting Help or Contributing to Rally

CHAPTER 2

Source Code

Rally’s source code is available on Github. You can also check the changelog and the roadmap there.

2.1 Quickstart

Rally is developed for Unix and is actively tested on Linux and MacOS. Rally supports benchmarking Elasticsearch
clusters running on Windows but Rally itself needs to be installed on machines running Unix.

2.1.1 Install

Install Python 3.5+ including pip3, git 1.9+ and an appropriate JDK to run Elasticsearch Be sure that JAVA_HOME
points to that JDK. Then run the following command, optionally prefixed by sudo if necessary:

pip3 install esrally

If you have any trouble or need more detailed instructions, look in the detailed installation guide.

2.1.2 Configure

Just invoke esrally configure.

For more detailed instructions and a detailed walkthrough see the configuration guide.

2.1.3 Run your first race

Now we’re ready to run our first race:

esrally --distribution-version=6.5.3

5

https://github.com/elastic/rally
https://github.com/elastic/rally/releases
https://github.com/elastic/rally/milestones
http://esrally.readthedocs.io/en/stable/recipes.html#benchmarking-an-existing-cluster
http://esrally.readthedocs.io/en/stable/recipes.html#benchmarking-an-existing-cluster
https://www.elastic.co/support/matrix#matrix_jvm

Rally Documentation, Release 1.4.0

This will download Elasticsearch 6.5.3 and run Rally’s default track - the geonames track - against it. After the race,
a summary report is written to the command line::

--
_______ __ _____

/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

| Lap | Metric |
→˓ Task	Value	Unit
→˓------------:	----------:	--------:
All	Cumulative indexing time of primary shards	
→˓	54.5878	min
All	Min cumulative indexing time across primary shards	
→˓	10.7519	min
All	Median cumulative indexing time across primary shards	
→˓	10.9219	min
All	Max cumulative indexing time across primary shards	
→˓	11.1754	min
All	Cumulative indexing throttle time of primary shards	
→˓	0	min
All	Min cumulative indexing throttle time across primary shards	
→˓	0	min
All	Median cumulative indexing throttle time across primary shards	
→˓	0	min
All	Max cumulative indexing throttle time across primary shards	
→˓	0	min
All	Cumulative merge time of primary shards	
→˓	20.4128	min
All	Cumulative merge count of primary shards	
→˓	136	
All	Min cumulative merge time across primary shards	
→˓	3.82548	min
All	Median cumulative merge time across primary shards	
→˓	4.1088	min
All	Max cumulative merge time across primary shards	
→˓	4.38148	min
All	Cumulative merge throttle time of primary shards	
→˓	1.17975	min
All	Min cumulative merge throttle time across primary shards	
→˓	0.1169	min
All	Median cumulative merge throttle time across primary shards	
→˓	0.26585	min
All	Max cumulative merge throttle time across primary shards	
→˓	0.291033	min
All	Cumulative refresh time of primary shards	
→˓	7.0317	min
All	Cumulative refresh count of primary shards	
→˓	420	
All	Min cumulative refresh time across primary shards	
→˓	1.37088	min
All	Median cumulative refresh time across primary shards	
→˓	1.4076	min
All	Max cumulative refresh time across primary shards	
→˓ | 1.43343 | min | (continues on next page)

6 Chapter 2. Source Code

https://github.com/elastic/rally-tracks/tree/master/geonames

Rally Documentation, Release 1.4.0

(continued from previous page)

| All | Cumulative flush time of primary shards |
→˓ | 0.599417 | min |
| All | Cumulative flush count of primary shards |
→˓ | 10 | |
| All | Min cumulative flush time across primary shards |
→˓ | 0.0946333 | min |
| All | Median cumulative flush time across primary shards |
→˓ | 0.118767 | min |
| All | Max cumulative flush time across primary shards |
→˓ | 0.14145 | min |
| All | Median CPU usage |
→˓ | 284.4 | % |
| All | Total Young Gen GC |
→˓ | 12.868 | s |
| All | Total Old Gen GC |
→˓ | 3.803 | s |
| All | Store size |
→˓ | 3.17241 | GB |
| All | Translog size |
→˓ | 2.62736 | GB |
| All | Index size |
→˓ | 5.79977 | GB |
| All | Total written |
→˓ | 22.8536 | GB |
| All | Heap used for segments |
→˓ | 18.8885 | MB |
| All | Heap used for doc values |
→˓ | 0.0322647 | MB |
| All | Heap used for terms |
→˓ | 17.7184 | MB |
| All | Heap used for norms |
→˓ | 0.0723877 | MB |
| All | Heap used for points |
→˓ | 0.277171 | MB |
| All | Heap used for stored fields |
→˓ | 0.788307 | MB |
| All | Segment count |
→˓ | 94 | |
| All | Min Throughput |
→˓index-append | 38089.5 | docs/s |
| All | Median Throughput |
→˓index-append | 38613.9 | docs/s |
| All | Max Throughput |
→˓index-append | 40693.3 | docs/s |
| All | 50th percentile latency |
→˓index-append | 803.417 | ms |
| All | 90th percentile latency |
→˓index-append | 1913.7 | ms |
| All | 99th percentile latency |
→˓index-append | 3591.23 | ms |
| All | 99.9th percentile latency |
→˓index-append | 6176.23 | ms |
| All | 100th percentile latency |
→˓index-append | 6642.97 | ms |
| All | 50th percentile service time |
→˓index-append | 803.417 | ms |
| All | 90th percentile service time |
→˓index-append | 1913.7 | ms | (continues on next page)

2.1. Quickstart 7

Rally Documentation, Release 1.4.0

(continued from previous page)

| All | 99th percentile service time |
→˓index-append | 3591.23 | ms |
| All | 99.9th percentile service time |
→˓index-append | 6176.23 | ms |
| All | 100th percentile service time |
→˓index-append | 6642.97 | ms |
| All | error rate |
→˓index-append | 0 | % |
| All | ... |
→˓ ... | ... | ... |
| All | ... |
→˓ ... | ... | ... |
| All | Min Throughput | large_
→˓prohibited_terms | 2 | ops/s |
| All | Median Throughput | large_
→˓prohibited_terms | 2 | ops/s |
| All | Max Throughput | large_
→˓prohibited_terms | 2 | ops/s |
| All | 50th percentile latency | large_
→˓prohibited_terms | 344.429 | ms |
| All | 90th percentile latency | large_
→˓prohibited_terms | 353.187 | ms |
| All | 99th percentile latency | large_
→˓prohibited_terms | 377.22 | ms |
| All | 100th percentile latency | large_
→˓prohibited_terms | 392.918 | ms |
| All | 50th percentile service time | large_
→˓prohibited_terms | 341.177 | ms |
| All | 90th percentile service time | large_
→˓prohibited_terms | 349.979 | ms |
| All | 99th percentile service time | large_
→˓prohibited_terms | 374.958 | ms |
| All | 100th percentile service time | large_
→˓prohibited_terms | 388.62 | ms |
| All | error rate | large_
→˓prohibited_terms | 0 | % |

[INFO] SUCCESS (took 1862 seconds)

2.1.4 Next steps

Now you can check how to run benchmarks, get a better understanding how to interpret the numbers in the summary
report or start to create your own tracks. Be sure to check also some tips and tricks to help you understand how to
solve specific problems in Rally.

Also run esrally --help to see what options are available and keep the command line reference handy for more
detailed explanations of each option.

2.2 Installation

This is the detailed installation guide for Rally. If you are in a hurry you can check the quickstart guide.

8 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

2.2.1 Hardware Requirements

Use an SSD on the load generator machine. If you run bulk-indexing benchmarks, Rally will read one or more data
files from disk. Usually, you will configure multiple clients and each client reads a portion of the data file. To the disk
this appears as a random access pattern where spinning disks perform poorly. To avoid an accidental bottleneck on
client-side you should therefore use an SSD on each load generator machine.

2.2.2 Prerequisites

Rally does not support Windows and is only actively tested on MacOS and Linux. Install the following packages first.

Python

• Python 3.5 or better available as python3 on the path. Verify with: python3 --version.

• Python3 header files (included in the Python3 development package).

• pip3 available on the path. Verify with pip3 --version.

Debian / Ubuntu

sudo apt-get install gcc python3-pip python3-dev

RHEL / CentOS 6 and 7

Please refer to the installation instructions for Python 3.5 in the Red Hat Software Collections.

Amazon Linux

sudo yum install -y gcc python35-pip.noarch python35-devel.x86_64

MacOS

We recommend that you use Homebrew:

brew install python3

git

Git is not required if all of the following conditions are met:

• You are using Rally only as a load generator (--pipeline=benchmark-only) or you are referring to
Elasticsearch configurations with --team-path.

• You create your own tracks and refer to them with --track-path.

In all other cases, Rally requires git 1.9 or better. Verify with git --version.

Debian / Ubuntu

sudo apt-get install git

Red Hat / CentOS / Amazon Linux

sudo yum install git

2.2. Installation 9

https://www.softwarecollections.org/en/scls/rhscl/rh-python35/
https://brew.sh/

Rally Documentation, Release 1.4.0

Note: If you use RHEL, install a recent version of git via the Red Hat Software Collections.

MacOS

git is already installed on MacOS.

JDK

A JDK is required on all machines where you want to launch Elasticsearch. If you use Rally just as a load generator
to benchmark remote clusters, no JDK is required. For details on how to install a JDK check your operating system’s
documentation pages.

To find the JDK, Rally expects the environment variable JAVA_HOME to be set on all targeted machines. To have more
specific control, for example when you want to benchmark across a wide range of Elasticsearch releases, you can also
set JAVAx_HOME where x is the major version of a JDK (e.g. JAVA8_HOME would point to a JDK 8 installation).
Rally will then choose the highest supported JDK per version of Elasticsearch that is available.

Note: If you have Rally download, install and benchmark a local copy of Elasticsearch (i.e., the default Rally
behavior) be sure to configure the Operating System (OS) of your Rally server with the recommended kernel settings

2.2.3 Installing Rally

Simply install Rally with pip: pip3 install esrally

Note: Depending on your system setup you may need to prepend this command with sudo.

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Ensure that you have installed the Python development package as documented in the
prerequisites section above.

2.2.4 Non-sudo Install

If you don’t want to use sudo when installing Rally, installation is still possible but a little more involved:

1. Specify the --user option when installing Rally (step 2 above), so the command to be issued is: python3
setup.py develop --user.

2. Check the output of the install script or lookup the Python documentation on the variable site.USER_BASE to
find out where the script is located. On Linux, this is typically ~/.local/bin.

You can now either add ~/.local/bin to your path or invoke Rally via ~/.local/bin/esrally instead of
just esrally.

2.2.5 VirtualEnv Install

You can also use Virtualenv to install Rally into an isolated Python environment without sudo.

1. Set up a new virtualenv environment in a directory with virtualenv --python=python3 .

2. Activate the environment with source /path/to/virtualenv/dir/bin/activate

10 Chapter 2. Source Code

https://www.softwarecollections.org/en/scls/rhscl/git19/
http://esrally.readthedocs.io/en/stable/quickstart.html#run-your-first-race
http://esrally.readthedocs.io/en/stable/quickstart.html#run-your-first-race
https://www.elastic.co/guide/en/elasticsearch/reference/master/system-config.html
https://docs.python.org/3.5/library/site.html#site.USER_BASE

Rally Documentation, Release 1.4.0

3. Install Rally with pip install esrally

Whenever you want to use Rally, run the activation script (step 2 above) first. When you are done, simply execute
deactivate in the shell to exit the virtual environment.

2.2.6 PyEnv Install

Rally can be tested with different Python versions and it uses pyenv to manage them.

Please refer to PyEnv installation instructions.

2.2.7 Docker

Docker images of Rally can be found in DockerHub.

Please refer to Running Rally with Docker for detailed instructions.

2.2.8 Offline Install

If you are in a corporate environment where your servers do not have any access to the Internet, you can use Rally’s
offline installation package. Follow these steps to install Rally:

1. Install all prerequisites as documented above.

2. Download the offline installation package for the latest release and copy it to the target machine(s).

3. Decompress the installation package with tar -xzf esrally-dist-*.tar.gz.

4. Run the install script with sudo ./esrally-dist-*/install.sh.

2.2.9 Next Steps

After you have installed Rally, you need to configure it. Just run esrally configure or follow the configuration
help page for more guidance.

2.3 Running Rally with Docker

Rally is available as a Docker image.

2.3.1 Limitations

The following Rally functionality isn’t supported when using the Docker image:

• Distributing the load test driver to apply load from multiple machines.

• Using other pipelines apart from benchmark-only.

2.3. Running Rally with Docker 11

https://github.com/pyenv/pyenv#installation
https://hub.docker.com/r/elastic/rally
https://github.com/elastic/rally/releases/latest
https://hub.docker.com/r/elastic/rally

Rally Documentation, Release 1.4.0

2.3.2 Quickstart

You can test the Rally Docker image by first issuing a simple command to list the available tracks:

$ docker run elastic/rally list tracks

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Available tracks:

Name Description
→˓

→˓ Documents Compressed Size Uncompressed Size
→˓Default Challenge All Challenges
------------- ---
→˓--
→˓---------------------- ----------- ----------------- ------------------- -------
→˓---------------- --
→˓---
geopoint Point coordinates from PlanetOSM
→˓

→˓ 60,844,404 481.9 MB 2.3 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-fast-
→˓with-conflicts
eventdata This benchmark indexes HTTP access logs generated based sample logs
→˓from the elastic.co website using the generator available in https://github.com/
→˓elastic/rally-eventdata-track 20,000,000 755.1 MB 15.3 GB
→˓append-no-conflicts append-no-conflicts
nested StackOverflow Q&A stored as nested docs
→˓

→˓ 11,203,029 663.1 MB 3.4 GB nested-
→˓search-challenge nested-search-challenge,index-only
so Indexing benchmark using up to questions and answers from
→˓StackOverflow
→˓ 36,062,278 8.9 GB 33.1 GB
→˓ append-no-conflicts append-no-conflicts
geoshape Shapes from PlanetOSM
→˓

→˓ 60,523,283 13.4 GB 45.4 GB append-
→˓no-conflicts append-no-conflicts
http_logs HTTP server log data
→˓

→˓ 247,249,096 1.2 GB 31.1 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-sorted-
→˓no-conflicts,append-index-only-with-ingest-pipeline,update
geonames POIs from Geonames
→˓

→˓ 11,396,505 252.4 MB 3.3 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-sorted-
→˓no-conflicts,append-fast-with-conflicts
noaa Global daily weather measurements from NOAA
→˓

→˓ 33,659,481 947.3 MB 9.0 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only (continues on next page)

12 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

percolator Percolator benchmark based on AOL queries
→˓

→˓ 2,000,000 102.7 kB 104.9 MB append-
→˓no-conflicts append-no-conflicts
nyc_taxis Taxi rides in New York in 2015
→˓

→˓ 165,346,692 4.5 GB 74.3 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-sorted-
→˓no-conflicts-index-only,update,append-ml
geopointshape Point coordinates from PlanetOSM indexed as geoshapes
→˓

→˓ 60,844,404 470.5 MB 2.6 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-fast-
→˓with-conflicts
metricbeat Metricbeat data
→˓

→˓ 1,079,600 87.6 MB 1.2 GB append-
→˓no-conflicts append-no-conflicts
pmc Full text benchmark with academic papers from PMC
→˓

→˓ 574,199 5.5 GB 21.7 GB append-
→˓no-conflicts append-no-conflicts,append-no-conflicts-index-only,append-sorted-
→˓no-conflicts,append-fast-with-conflicts

[INFO] SUCCESS (took 3 seconds)

As a next step, we assume that Elasticsearch is running on es01:9200 and is accessible from the host where you are
running the Rally Docker image. Run the nyc_taxis track in test-mode using:

$ docker run elastic/rally --track=nyc_taxis --test-mode --pipeline=benchmark-only --
→˓target-hosts=es01:9200

Note: We didn’t need to explicitly specify esrally as we’d normally do in a normal CLI invocation; the entrypoint
in the Docker image does this automatically.

Now you are able to use all regular Rally commands, bearing in mind the aforementioned limitations.

2.3.3 Configuration

The Docker image ships with a default configuration file under /rally/.rally/rally.ini. To customize Rally
you can create your own rally.ini and bind mount it using:

docker run -v /home/<myuser>/custom_rally.ini:/rally/.rally/rally.ini elastic/rally ..
→˓.

2.3.4 Persistence

It is highly recommended to use a local bind mount (or a named volume) for the directory /rally/.rally in the
container. This will ensure you have persistence across invocations and any tracks downloaded and extracted can be

2.3. Running Rally with Docker 13

https://success.docker.com/article/different-types-of-volumes

Rally Documentation, Release 1.4.0

reused, reducing the startup time. You need to ensure the UID is 1000 (or GID is 0 especially in OpenShift) so that
Rally can write to the bind-mounted directory.

If your local bind mount doesn’t contain a rally.ini the container will create one for you during the first run.

Example:

mkdir myrally
sudo chgrp 0 myrally

First run will generate the rally.ini
docker run --rm -v $PWD/myrally:/rally/.rally elastic/rally --track=nyc_taxis --test-
→˓mode --pipeline=benchmark-only --target-hosts=es01:9200

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. Run the advanced configuration with:

esrally configure --advanced-config

* Setting up benchmark root directory in /rally/.rally/benchmarks

* Setting up benchmark source directory in /rally/.rally/benchmarks/src/elasticsearch

Configuration successfully written to /rally/.rally/rally.ini. Happy benchmarking!

More info about Rally:

* Type esrally --help

* Read the documentation at https://esrally.readthedocs.io/en/latest/

* Ask a question on the forum at https://discuss.elastic.co/c/elasticsearch/rally

now run our benchmark
docker run --rm -v $PWD/myrally:/rally/.rally elastic/rally --track=nyc_taxis --test-
→˓mode --pipeline=benchmark-only --target-hosts=es01:9200

...

inspect results
$ tree myrally/benchmarks/races/
myrally/benchmarks/races/

1d81930a-4ebe-4640-a09b-3055174bce43
race.json

1 directory, 1 file

In case you forgot to bind mount a directory, the Rally Docker image will create an anonymous volume for /rally/
.rally to ensure logs and results get persisted even after the container has terminated.

For example, after executing our earlier quickstart example docker run elastic/
rally --track=nyc_taxis --test-mode --pipeline=benchmark-only
--target-hosts=es01:9200, docker volume ls shows a volume:

$ docker volume ls
DRIVER VOLUME NAME

(continues on next page)

14 Chapter 2. Source Code

https://success.docker.com/article/different-types-of-volumes

Rally Documentation, Release 1.4.0

(continued from previous page)

local 96256462c3a1f61120443e6d69d9cb0091b28a02234318bdabc52b6801972199

To further examine the contents we can bind mount it from another image e.g.:

$ docker run --rm -i -
→˓v=96256462c3a1f61120443e6d69d9cb0091b28a02234318bdabc52b6801972199:/rallyvolume -ti
→˓python:3.7.3-slim /bin/bash
root@9a7dd7b3d8df:/# cd /rallyvolume/
root@9a7dd7b3d8df:/rallyvolume# ls
root@9a7dd7b3d8df:/rallyvolume/.rally# ls
benchmarks logging.json logs rally.ini
head -4 benchmarks/races/1d81930a-4ebe-4640-a09b-3055174bce43/race.json
{
"rally-version": "1.2.1.dev0",
"environment": "local",
"race-id": "1d81930a-4ebe-4640-a09b-3055174bce43",

2.3.5 Specifics about the image

Rally runs as user 1000 and its files are installed with uid:gid 1000:0 (to support Arbitrary User IDs).

2.3.6 Extending the Docker image

You can also create your own customized Docker image on top of the existing one. The example below shows how to
get started:

FROM elastic/rally:1.2.1
COPY --chown=1000:0 rally.ini /rally/.rally/

You can then build and test the image with:

docker build --tag=custom-rally .
docker run -ti custom-rally list tracks

2.4 Configuration

Rally has to be configured once after installation. If you just run esrally after installing Rally, it will detect that the
configuration file is missing and asks you a few questions.

If you want to reconfigure Rally at any later time, just run esrally configure again.

2.4.1 Simple Configuration

By default, Rally will run a simpler configuration routine and autodetect as much settings as possible or choose defaults
for you. If you need more control you can run Rally with esrally configure --advanced-config.

Rally can build Elasticsearch either from sources or use an official binary distribution. If you have Rally build Elas-
ticsearch from sources, it can only be used to benchmark Elasticsearch 5.0 and above. The reason is that with Elas-
ticsearch 5.0 the build tool switched from Maven to Gradle. As Rally utilizes the Gradle Wrapper, it is limited to
Elasticsearch 5.0 and above.

2.4. Configuration 15

https://docs.openshift.com/enterprise/3.1/creating_images/guidelines.html
https://www.elastic.co/downloads/elasticsearch

Rally Documentation, Release 1.4.0

Let’s go through an example step by step: First run esrally:

dm@io:~ $ esrally
____ ____

/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. Run the advanced configuration with:

esrally configure --advanced-config

* Setting up benchmark root directory in /Users/dm/.rally/benchmarks

* Setting up benchmark source directory in /Users/dm/.rally/benchmarks/src/
→˓elasticsearch

Configuration successfully written to /Users/dm/.rally/rally.ini. Happy benchmarking!

More info about Rally:

* Type esrally --help

* Read the documentation at https://esrally.readthedocs.io/en/latest/

* Ask a question on the forum at https://discuss.elastic.co/c/elasticsearch/rally

Congratulations! Time to run your first benchmark.

2.4.2 Advanced Configuration

If you need more control over a few variables or want to store your metrics in a dedicated Elasticsearch metrics store,
then you should run the advanced configuration routine. You can invoke it at any time with esrally configure
--advanced-config.

Prerequisites

When using the advanced configuration, you can choose that Rally stores its metrics not in-memory but in a dedicated
Elasticsearch instance. Therefore, you will also need the following software installed:

• Elasticsearch: a dedicated Elasticsearch instance which acts as the metrics store for Rally. If you don’t want to
set it up yourself you can also use Elastic Cloud.

• Optional: Kibana (also included in Elastic Cloud).

Preparation

First install Elasticsearch 6.0 or higher. A simple out-of-the-box installation with a single node will suffice. Rally uses
this instance to store metrics data. It will setup the necessary indices by itself. The configuration procedure of Rally
will you ask for host and port of this cluster.

Note: Rally will choose the port range 39200-39300 (HTTP) and 39300-39400 (transport) for the benchmark cluster,
so do not use this port range for the metrics store.

Optional but recommended is to install also Kibana. However, note that Kibana will not be auto-configured by Rally.

16 Chapter 2. Source Code

https://www.elastic.co/cloud
https://www.elastic.co/cloud
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana

Rally Documentation, Release 1.4.0

Configuration Options

Rally will ask you a few more things in the advanced setup:

• Benchmark root directory: Rally stores all benchmark related data in this directory which can take up to
several tens of GB. If you want to use a dedicated partition, you can specify a different root directory here.

• Elasticsearch project directory: This is the directory where the Elasticsearch sources are located. If you don’t
actively develop on Elasticsearch you can just leave the default but if you want to benchmark local changes you
should point Rally to your project directory. Note that Rally will run builds with the Gradle Wrapper in this
directory (it runs ./gradlew clean and ./gradlew :distribution:tar:assemble).

• Metrics store type: You can choose between in-memory which requires no additional setup or
elasticsearch which requires that you start a dedicated Elasticsearch instance to store metrics but gives
you much more flexibility to analyse results.

• Metrics store settings (only for metrics store type elasticsearch): Provide the connection details to
the Elasticsearch metrics store. This should be an instance that you use just for Rally but it can be a rather
small one. A single node cluster with default setting should do it. When using self-signed certificates on
the Elasticsearch metrics store, certificate verification can be turned off by setting the datastore.ssl.
verification_mode setting to none. Alternatively you can enter the path to the certificate authority’s
signing certificate in datastore.ssl.certificate_authorities. Both settings are optional.

• Name for this benchmark environment (only for metrics store type elasticsearch): You can use the
same metrics store for multiple environments (e.g. local, continuous integration etc.) so you can separate
metrics from different environments by choosing a different name.

• whether or not Rally should keep the Elasticsearch benchmark candidate installation including all data by de-
fault. This will use lots of disk space so you should wipe ~/.rally/benchmarks/races regularly.

2.4.3 Proxy Configuration

Rally downloads all necessary data automatically for you:

• Elasticsearch distributions from elastic.co if you specify --distribution-version=SOME_VERSION_NUMBER

• Elasticsearch source code from Github if you specify a revision number e.g. --revision=952097b

• Track meta-data from Github

• Track data from an S3 bucket

Hence, it needs to connect via http(s) to the outside world. If you are behind a corporate proxy you need to configure
Rally and git. As many other Unix programs, Rally relies that the HTTP proxy URL is available in the environment
variable http_proxy (note that this is in lower-case). Hence, you should add this line to your shell profile, e.g.
~/.bash_profile:

export http_proxy=http://proxy.acme.org:8888/

Afterwards, source the shell profile with source ~/.bash_profile and verify that the proxy URL is correctly
set with echo $http_proxy.

Finally, you can set up git (see also the Git config documentation):

git config --global http.proxy $http_proxy

Verify that the proxy setup for git works correctly by cloning any repository, e.g. the rally-tracks repository:

git clone https://github.com/elastic/rally-tracks.git

2.4. Configuration 17

https://git-scm.com/docs/git-config

Rally Documentation, Release 1.4.0

If the configuration is correct, git will clone this repository. You can delete the folder rally-tracks after this
verification step.

To verify that Rally will connect via the proxy server you can check the log file. If the proxy server is configured
successfully, Rally will log the following line on startup:

Rally connects via proxy URL [http://proxy.acme.org:3128/] to the Internet (picked up
→˓from the environment variable [http_proxy]).

Note: Rally will use this proxy server only for downloading benchmark-related data. It will not use this proxy for the
actual benchmark.

2.4.4 Logging

Logging in Rally is configured in ~/.rally/logging.json. For more information about the log file format
please refer to the following documents:

• Python logging cookbook provides general tips and tricks.

• The Python reference documentation on the logging configuration schema explains the file format.

• The logging handler documentation describes how to customize where log output is written to.

By default, Rally will log all output to ~/.rally/logs/rally.log.

The log file will not be rotated automatically as this is problematic due to Rally’s multi-process architecture. Setup an
external tool like logrotate to achieve that. See the following example as a starting point for your own logrotate
configuration and ensure to replace the path /home/user/.rally/logs/rally.log with the proper one:

/home/user/.rally/logs/rally.log {
rotate daily
daily
keep the last seven log files
rotate 7
remove logs older than 14 days
maxage 14
compress old logs ...
compress
... after moving them
delaycompress
ignore missing log files
missingok
don't attempt to rotate empty ones
notifempty

}

Example

With the following configuration Rally will log all output to standard error:

{
"version": 1,
"formatters": {
"normal": {

"format": "%(asctime)s,%(msecs)d %(actorAddress)s/PID:%(process)d %(name)s
→˓%(levelname)s %(message)s", (continues on next page)

18 Chapter 2. Source Code

https://docs.python.org/3/howto/logging-cookbook.html
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema
https://docs.python.org/3/library/logging.handlers.html
https://linux.die.net/man/8/logrotate

Rally Documentation, Release 1.4.0

(continued from previous page)

"datefmt": "%Y-%m-%d %H:%M:%S",
"()": "esrally.log.configure_utc_formatter"

}
},
"filters": {
"isActorLog": {

"()": "thespian.director.ActorAddressLogFilter"
}

},
"handlers": {
"console_log_handler": {

"class": "logging.StreamHandler",
"formatter": "normal",
"filters": ["isActorLog"]

}
},
"root": {
"handlers": ["console_log_handler"],
"level": "INFO"

},
"loggers": {
"elasticsearch": {

"handlers": ["console_log_handler"],
"level": "WARNING",
"propagate": false

}
}

}

2.5 Run a Benchmark: Races

2.5.1 Definition

A “race” in Rally is the execution of a benchmarking experiment. You can choose different benchmarking scenarios
(called tracks) for your benchmarks.

2.5.2 List Tracks

Start by finding out which tracks are available:

esrally list tracks

This will show the following list:

Name Description Documents
→˓Compressed Size Uncompressed Size Default Challenge All Challenges
---------- --- ----------- ----------
→˓------- ------------------- ----------------------- ---------------------------
geonames POIs from Geonames 11396505 252.4 MB
→˓ 3.3 GB append-no-conflicts append-no-conflicts,appe...
geopoint Point coordinates from PlanetOSM 60844404 481.9 MB
→˓ 2.3 GB append-no-conflicts append-no-conflicts,appe...

(continues on next page)

2.5. Run a Benchmark: Races 19

Rally Documentation, Release 1.4.0

(continued from previous page)

http_logs HTTP server log data 247249096 1.2 GB
→˓ 31.1 GB append-no-conflicts append-no-conflicts,appe...
nested StackOverflow Q&A stored as nested docs 11203029 663.1 MB
→˓ 3.4 GB nested-search-challenge nested-search-challenge,...
noaa Global daily weather measurements from NOAA 33659481 947.3 MB
→˓ 9.0 GB append-no-conflicts append-no-conflicts,appe...
nyc_taxis Taxi rides in New York in 2015 165346692 4.5 GB
→˓ 74.3 GB append-no-conflicts append-no-conflicts,appe...
percolator Percolator benchmark based on AOL queries 2000000 102.7 kB
→˓ 104.9 MB append-no-conflicts append-no-conflicts,appe...
pmc Full text benchmark with academic papers from PMC 574199 5.5 GB
→˓ 21.7 GB append-no-conflicts append-no-conflicts,appe...

The first two columns show the name and a description of each track. A track also specifies one or more challenges
which describe the workload to run.

2.5.3 Starting a Race

Note: Do not run Rally as root as Elasticsearch will refuse to start with root privileges.

To start a race you have to define the track and challenge to run. For example:

esrally --distribution-version=6.0.0 --track=geopoint --challenge=append-fast-with-
→˓conflicts

Rally will then start racing on this track. If you have never started Rally before, it should look similar to the following
output:

dm@io:~ $ esrally --distribution-version=6.0.0 --track=geopoint --challenge=append-
→˓fast-with-conflicts

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

[INFO] Racing on track [geopoint], challenge [append-fast-with-conflicts] and car [
→˓'defaults'] with version [6.0.0].
[INFO] Downloading Elasticsearch 6.0.0 ... [OK]
[INFO] Rally will delete the benchmark candidate after the benchmark
[INFO] Downloading data from [http://benchmarks.elasticsearch.org.s3.amazonaws.com/
→˓corpora/geopoint/documents.json.bz2] (482 MB) to [/Users/dm/.rally/benchmarks/data/
→˓geopoint/documents.json.bz2] ... [OK]
[INFO] Decompressing track data from [/Users/dm/.rally/benchmarks/data/geopoint/
→˓documents.json.bz2] to [/Users/dm/.rally/benchmarks/data/geopoint/documents.json]
→˓(resulting size: 2.28 GB) ... [OK]
[INFO] Preparing file offset table for [/Users/dm/.rally/benchmarks/data/geopoint/
→˓documents.json] ... [OK]
Running index-update [0%
→˓done]

The benchmark will take a while to run, so be patient.

20 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

When the race has finished, Rally will show a summary on the command line:

Metric	Task	Value	Unit
Total indexing time		124.712	min
Total merge time		21.8604	min
Total refresh time		4.49527	min
Total merge throttle time		0.120433	min
Median CPU usage		546.5	%
Total Young Gen GC		72.078	s
Total Old Gen GC		3.426	s
Index size		2.26661	GB
Total written		30.083	GB
Heap used for segments		10.7148	MB
Heap used for doc values		0.0135536	MB
Heap used for terms		9.22965	MB
Heap used for points		0.78789	MB
Heap used for stored fields		0.683708	MB
Segment count		115	
Min Throughput	index-update	59210.4	docs/s
Median Throughput	index-update	65276.2	docs/s
Max Throughput	index-update	76516.6	docs/s
50.0th percentile latency	index-update	556.269	ms
90.0th percentile latency	index-update	852.779	ms
99.0th percentile latency	index-update	1854.31	ms
99.9th percentile latency	index-update	2972.96	ms
99.99th percentile latency	index-update	4106.91	ms
100th percentile latency	index-update	4542.84	ms
50.0th percentile service time	index-update	556.269	ms
90.0th percentile service time	index-update	852.779	ms
99.0th percentile service time	index-update	1854.31	ms
99.9th percentile service time	index-update	2972.96	ms
99.99th percentile service time	index-update	4106.91	ms
100th percentile service time	index-update	4542.84	ms
Min Throughput	force-merge	0.221067	ops/s
Median Throughput	force-merge	0.221067	ops/s
Max Throughput	force-merge	0.221067	ops/s
100th percentile latency	force-merge	4523.52	ms
100th percentile service time	force-merge	4523.52	ms

[INFO] SUCCESS (took 1624 seconds)

Note: You can save this report also to a file by using --report-file=/path/to/your/report.md and save
it as CSV with --report-format=csv.

What did Rally just do?

• It downloaded and started Elasticsearch 6.0.0

• It downloaded the relevant data for the geopoint track

• It ran the actual benchmark

• And finally it reported the results

If you are curious about the operations that Rally has run, inspect the geopoint track specification or start to write your

2.5. Run a Benchmark: Races 21

https://github.com/elastic/rally-tracks/blob/5/geopoint/track.json

Rally Documentation, Release 1.4.0

own tracks. You can also configure Rally to store all data samples in Elasticsearch so you can analyze the results with
Kibana. Finally, you may want to change the Elasticsearch configuration.

2.6 Compare Results: Tournaments

Suppose, we want to analyze the impact of a performance improvement.

First, we need a baseline measurement. For example:

esrally --track=pmc --revision=latest --user-tag="intention:baseline_github_1234"

Above we run the baseline measurement based on the latest source code revision of Elasticsearch. We can use the
command line parameter --user-tag to provide a key-value pair to document the intent of a race.

Then we implement our changes and finally we want to run another benchmark to see the performance impact of the
change. In that case, we do not want Rally to change our source tree and thus specify the pseudo-revision current:

esrally --track=pmc --revision=current --user-tag="intention:reduce_alloc_1234"

After we’ve run both races, we want to know about the performance impact. With Rally we can analyze differences of
two given races easily. First of all, we need to find two races to compare by issuing esrally list races:

dm@io:~ $ esrally list races

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Recent races:

Race ID Race Timestamp Track Track Parameters
→˓Challenge Car User Tags
------------------------------------ ---------------- ------- ------------------ -
→˓----------------- -------- ------------------------------
beb154e4-0a05-4f45-ad9f-e34f9a9e51f7 20160518T122341Z pmc
→˓append-no-conflicts defaults intention:reduce_alloc_1234
0bfd4542-3821-4c79-81a2-0858636068ce 20160518T112057Z pmc
→˓append-no-conflicts defaults intention:baseline_github_1234
0cfb3576-3025-4c17-b672-d6c9e811b93e 20160518T101957Z pmc
→˓append-no-conflicts defaults

We can see that the user tag helps us to recognize races. We want to compare the two most recent races and have to
provide the two race IDs in the next step:

dm@io:~ $ esrally compare --baseline=0bfd4542-3821-4c79-81a2-0858636068ce --
→˓contender=beb154e4-0a05-4f45-ad9f-e34f9a9e51f7

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

(continues on next page)

22 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

Comparing baseline
Race ID: 0bfd4542-3821-4c79-81a2-0858636068ce
Race timestamp: 2016-05-18 11:20:57
Challenge: append-no-conflicts
Car: defaults

with contender
Race ID: beb154e4-0a05-4f45-ad9f-e34f9a9e51f7
Race timestamp: 2016-05-18 12:23:41
Challenge: append-no-conflicts
Car: defaults

--
_______ __ _____

/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

Metric Baseline Contender
→˓ Diff
-- ---------- ----------- ---
→˓--------------

Min Indexing Throughput [docs/s] 19501 19118 -
→˓383.00000

Median Indexing Throughput [docs/s] 20232 19927.5 -
→˓304.45833

Max Indexing Throughput [docs/s] 21172 20849 -
→˓323.00000

Total indexing time [min] 55.7989 56.335
→˓+0.53603

Total merge time [min] 12.9766 13.3115
→˓+0.33495

Total refresh time [min] 5.20067 5.20097
→˓+0.00030

Total flush time [min] 0.0648667 0.0681833
→˓+0.00332

Total merge throttle time [min] 0.796417 0.879267
→˓+0.08285

Query latency term (50.0 percentile) [ms] 2.10049 2.15421
→˓+0.05372

Query latency term (90.0 percentile) [ms] 2.77537 2.84168
→˓+0.06630

Query latency term (100.0 percentile) [ms] 4.52081 5.15368
→˓+0.63287

Query latency country_agg (50.0 percentile) [ms] 112.049 110.385 -
→˓1.66392

Query latency country_agg (90.0 percentile) [ms] 128.426 124.005 -
→˓4.42138

Query latency country_agg (100.0 percentile) [ms] 155.989 133.797 -
→˓22.19185

Query latency scroll (50.0 percentile) [ms] 16.1226 14.4974 -
→˓1.62519

Query latency scroll (90.0 percentile) [ms] 17.2383 15.4079 -
→˓1.83043

Query latency scroll (100.0 percentile) [ms] 18.8419 18.4241 -
→˓0.41784

(continues on next page)

2.6. Compare Results: Tournaments 23

Rally Documentation, Release 1.4.0

(continued from previous page)

Query latency country_agg_cached (50.0 percentile) [ms] 1.70223 1.64502 -
→˓0.05721
Query latency country_agg_cached (90.0 percentile) [ms] 2.34819 2.04318 -
→˓0.30500
Query latency country_agg_cached (100.0 percentile) [ms] 3.42547 2.86814 -
→˓0.55732

Query latency default (50.0 percentile) [ms] 5.89058 5.83409 -
→˓0.05648

Query latency default (90.0 percentile) [ms] 6.71282 6.64662 -
→˓0.06620

Query latency default (100.0 percentile) [ms] 7.65307 7.3701 -
→˓0.28297

Query latency phrase (50.0 percentile) [ms] 1.82687 1.83193
→˓+0.00506

Query latency phrase (90.0 percentile) [ms] 2.63714 2.46286 -
→˓0.17428

Query latency phrase (100.0 percentile) [ms] 5.39892 4.22367 -
→˓1.17525

Median CPU usage (index) [%] 668.025 679.15
→˓+11.12499

Median CPU usage (stats) [%] 143.75 162.4
→˓+18.64999

Median CPU usage (search) [%] 223.1 229.2
→˓+6.10000

Total Young Gen GC [s] 39.447 40.456
→˓+1.00900

Total Old Gen GC [s] 7.108 7.703
→˓+0.59500

Index size [GB] 3.25475 3.25098 -
→˓0.00377

Total written [GB] 17.8434 18.3143
→˓+0.47083

Heap used for segments [MB] 21.7504 21.5901 -
→˓0.16037

Heap used for doc values [MB] 0.16436 0.13905 -
→˓0.02531

Heap used for terms [MB] 20.0293 19.9159 -
→˓0.11345

Heap used for norms [MB] 0.105469 0.0935669 -
→˓0.01190

Heap used for points [MB] 0.773487 0.772155 -
→˓0.00133

Heap used for points [MB] 0.677795 0.669426 -
→˓0.00837

Segment count 136 121 -
→˓15.00000

Indices Stats(90.0 percentile) [ms] 3.16053 3.21023
→˓+0.04969

Indices Stats(99.0 percentile) [ms] 5.29526 3.94132 -
→˓1.35393

Indices Stats(100.0 percentile) [ms] 5.64971 7.02374
→˓+1.37403

Nodes Stats(90.0 percentile) [ms] 3.19611 3.15251 -
→˓0.04360

Nodes Stats(99.0 percentile) [ms] 4.44111 4.87003
→˓+0.42892

Nodes Stats(100.0 percentile) [ms] 5.22527 5.66977
→˓+0.44450 (continues on next page)

24 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

2.7 Setting up a Cluster

In this section we cover how to setup an Elasticsearch cluster with Rally. It is by no means required to use Rally for
this and you can also use existing tooling like Ansible to achieve the same goal. The main difference between standard
tools and Rally is that Rally is capable of setting up a wide range of Elasticsearch versions.

Warning: The following functionality is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

2.7.1 Overview

You can use the following subcommands in Rally to manage Elasticsearch nodes:

• install to install a single Elasticsearch node

• start to start a previously installed Elasticsearch node

• stop to stop a running Elasticsearch node and remove the installation

Each command needs to be executed locally on the machine where the Elasticsearch node should run. To setup more
complex clusters remotely, we recommend using a tool like Ansible to connect to remote machines and issue these
commands via Rally.

2.7.2 Getting Started: Benchmarking a Single Node

In this section we will setup a single Elasticsearch node locally, run a benchmark and then cleanup.

First we need to install Elasticearch:

esrally install --quiet --distribution-version=7.4.2 --node-name="rally-node-0" --
→˓network-host="127.0.0.1" --http-port=39200 --master-nodes="rally-node-0" --seed-
→˓hosts="127.0.0.1:39300"

The parameter --network-host defines the network interface this node will bind to and --http-port defines
which port will be exposed for HTTP traffic. Rally will automatically choose the transport port range as 100 above
(39300). The parameters --master-nodes and --seed-hosts are necessary for the discovery process. Please
see the respective Elasticsearch documentation on discovery for more details.

This produces the following output (the value will vary for each invocation):

{
"installation-id": "69ffcfee-6378-4090-9e93-87c9f8ee59a7"

}

We will need the installation id in the next steps to refer to our current installation.

Note: You can extract the installation id value with jq with the following command: jq --raw-output '.
["installation-id"]'.

2.7. Setting up a Cluster 25

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery.html
https://stedolan.github.io/jq/

Rally Documentation, Release 1.4.0

After installation, we can start the node. To tie all metrics of a benchmark together, Rally needs a consistent race id
across all invocations. The format of the race id does not matter but we suggest using UUIDs. You can generate a
UUID on the command line with uuidgen. Issue the following command to start the node:

generate a unique race id (use the same id from now on)
export RACE_ID=$(uuidgen)
esrally start --installation-id="69ffcfee-6378-4090-9e93-87c9f8ee59a7" --race-id="$
→˓{RACE_ID}"

After the Elasticsearch node has started, we can run a benchmark. Be sure to pass the same race id so you can match
results later in your metrics store:

esrally --pipeline=benchmark-only --target-host=127.0.0.1:39200 --track=geonames --
→˓challenge=append-no-conflicts-index-only --on-error=abort --race-id=${RACE_ID}

When the benchmark has finished, we can stop the node again:

esrally stop --installation-id="69ffcfee-6378-4090-9e93-87c9f8ee59a7"

If you only want to shutdown the node but don’t want to delete the node and the data, pass --preserve-install
additionally.

2.7.3 Levelling Up: Benchmarking a Cluster

This approach of being able to manage individual cluster nodes shows its power when we want to setup a cluster
consisting of multiple nodes. At the moment Rally only supports a uniform cluster architecture but with this approach
we can also setup arbitrarily complex clusters. The following examples shows how to setup a uniform three node
cluster on three machines with the IPs 192.168.14.77, 192.168.14.78 and 192.168.14.79. On each
machine we will issue the following command (pick the right one per machine):

on 192.168.14.77
export INSTALLATION_ID=$(esrally install --quiet --distribution-version=7.4.2 --node-
→˓name="rally-node-0" --network-host="192.168.14.77" --http-port=39200 --master-nodes=
→˓"rally-node-0,rally-node-1,rally-node-2" --seed-hosts="192.168.14.77:39300,192.168.
→˓14.78:39300,192.168.14.79:39300" | jq --raw-output '.["installation-id"]')
on 192.168.14.78
export INSTALLATION_ID=$(esrally install --quiet --distribution-version=7.4.2 --node-
→˓name="rally-node-1" --network-host="192.168.14.78" --http-port=39200 --master-nodes=
→˓"rally-node-0,rally-node-1,rally-node-2" --seed-hosts="192.168.14.77:39300,192.168.
→˓14.78:39300,192.168.14.79:39300" | jq --raw-output '.["installation-id"]')
on 192.168.14.79
export INSTALLATION_ID=$(esrally install --quiet --distribution-version=7.4.2 --node-
→˓name="rally-node-2" --network-host="192.168.14.79" --http-port=39200 --master-nodes=
→˓"rally-node-0,rally-node-1,rally-node-2" --seed-hosts="192.168.14.77:39300,192.168.
→˓14.78:39300,192.168.14.79:39300" | jq --raw-output '.["installation-id"]')

Then we pick a random race id, e.g. fb38013d-5d06-4b81-b81a-b61c8c10f6e5 and set it on each machine
(including the machine where will generate load):

export RACE_ID="fb38013d-5d06-4b81-b81a-b61c8c10f6e5"

Now we can start the cluster. Run the following command on each node:

esrally start --installation-id="${INSTALLATION_ID}" --race-id="${RACE_ID}"

Once this has finished, we can check that the cluster is up and running e.g. with the _cat/health API:

26 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

curl http://192.168.14.77:39200/_cat/health\?v

We should see that our cluster consisting of three nodes is up and running:

epoch timestamp cluster status node.total node.data shards pri relo init
→˓unassign pending_tasks max_task_wait_time active_shards_percent
1574930657 08:44:17 rally-benchmark green 3 3 0 0 0 0
→˓ 0 0 - 100.0%

Now we can start the benchmark on the load generator machine (remember to set the race id there):

esrally --pipeline=benchmark-only --target-host=192.168.14.77:39200,192.168.14.
→˓78:39200,192.168.14.79:39200 --track=geonames --challenge=append-no-conflicts-index-
→˓only --on-error=abort --race-id=${RACE_ID}

Similarly to the single-node benchmark, we can now shutdown the cluster again by issuing the following command
on each node:

esrally stop --installation-id="${INSTALLATION_ID}"

2.8 Tips and Tricks

This section covers various tips and tricks in a recipe-style fashion.

2.8.1 Benchmarking an existing cluster

Warning: If you are just getting started with Rally and don’t understand how it works, do NOT run it against
any production or production-like cluster. Besides, benchmarks should be executed in a dedicated environment
anyway where no additional traffic skews results.

Note: We assume in this recipe, that Rally is already properly configured.

Consider the following configuration: You have an existing benchmarking cluster, that consists of three Elasticsearch
nodes running on 10.5.5.10, 10.5.5.11, 10.5.5.12. You’ve setup the cluster yourself and want to benchmark
it with Rally. Rally is installed on 10.5.5.5.

2.8. Tips and Tricks 27

Rally Documentation, Release 1.4.0

First of all, we need to decide on a track. So, we run esrally list tracks:

Name Description Documents
→˓Compressed Size Uncompressed Size Default Challenge All Challenges
---------- --- ----------- ----------
→˓------- ------------------- ----------------------- ---------------------------
geonames POIs from Geonames 11396505 252.4 MB
→˓ 3.3 GB append-no-conflicts append-no-conflicts,appe...
geopoint Point coordinates from PlanetOSM 60844404 481.9 MB
→˓ 2.3 GB append-no-conflicts append-no-conflicts,appe...
http_logs HTTP server log data 247249096 1.2 GB
→˓ 31.1 GB append-no-conflicts append-no-conflicts,appe...
nested StackOverflow Q&A stored as nested docs 11203029 663.1 MB
→˓ 3.4 GB nested-search-challenge nested-search-challenge,...
noaa Global daily weather measurements from NOAA 33659481 947.3 MB
→˓ 9.0 GB append-no-conflicts append-no-conflicts,appe...
nyc_taxis Taxi rides in New York in 2015 165346692 4.5 GB
→˓ 74.3 GB append-no-conflicts append-no-conflicts,appe...
percolator Percolator benchmark based on AOL queries 2000000 102.7 kB
→˓ 104.9 MB append-no-conflicts append-no-conflicts,appe...
pmc Full text benchmark with academic papers from PMC 574199 5.5 GB
→˓ 21.7 GB append-no-conflicts append-no-conflicts,appe...

We’re interested in a full text benchmark, so we’ll choose to run pmc. If you have your own data that you want to use
for benchmarks create your own track instead; the metrics you’ll gather will be more representative and useful than
some default track.

Next, we need to know which machines to target which is easy as we can see that from the diagram above.

Finally we need to check which pipeline to use. For this case, the benchmark-only pipeline is suitable as we don’t
want Rally to provision the cluster for us.

Now we can invoke Rally:

esrally --track=pmc --target-hosts=10.5.5.10:9200,10.5.5.11:9200,10.5.5.12:9200 --
→˓pipeline=benchmark-only

If you have X-Pack Security enabled, then you’ll also need to specify another parameter to use https and to pass
credentials:

esrally --track=pmc --target-hosts=10.5.5.10:9243,10.5.5.11:9243,10.5.5.12:9243 --
→˓pipeline=benchmark-only --client-options="use_ssl:true,verify_certs:true,basic_auth_
→˓user:'elastic',basic_auth_password:'changeme'"

2.8.2 Benchmarking a remote cluster

Contrary to the previous recipe, you want Rally to provision all cluster nodes.

We will use the following configuration for the example:

• You will start Rally on 10.5.5.5. We will call this machine the “benchmark coordinator”.

• Your Elasticsearch cluster will consist of two nodes which run on 10.5.5.10 and 10.5.5.11. We will call
these machines the “benchmark candidate”s.

28 Chapter 2. Source Code

https://www.elastic.co/products/x-pack/security

Rally Documentation, Release 1.4.0

Note: All esrallyd nodes form a cluster that communicates via the “benchmark coordinator”. For aesthetic
reasons we do not show a direct connection between the “benchmark coordinator” and all nodes.

To run a benchmark for this scenario follow these steps:

1. Install and configure Rally on all machines. Be sure that the same version is installed on all of them and fully
configured.

2. Start the Rally daemon on each machine. The Rally daemon allows Rally to communicate with all
remote machines. On the benchmark coordinator run esrallyd start --node-ip=10.5.5.
5 --coordinator-ip=10.5.5.5 and on the benchmark candidate machines run esrallyd
start --node-ip=10.5.5.10 --coordinator-ip=10.5.5.5 and esrallyd start
--node-ip=10.5.5.11 --coordinator-ip=10.5.5.5 respectively. The --node-ip pa-
rameter tells Rally the IP of the machine on which it is running. As some machines have more than one network
interface, Rally will not attempt to auto-detect the machine IP. The --coordinator-ip parameter tells
Rally the IP of the benchmark coordinator node.

3. Start the benchmark by invoking Rally as usual on the benchmark coordinator, for example: esrally
--distribution-version=5.0.0 --target-hosts=10.5.5.10:9200,10.5.5.11:9200.
Rally will derive from the --target-hosts parameter that it should provision the nodes 10.5.5.10 and
10.5.5.11.

4. After the benchmark has finished you can stop the Rally daemon again. On the benchmark coordinator and on
the benchmark candidates run esrallyd stop.

Note: Logs are managed per machine, so all relevant log files and also telemetry output is stored on the benchmark
candidates but not on the benchmark coordinator.

Now you might ask yourself what the differences to benchmarks of existing clusters are. In general you should aim to

2.8. Tips and Tricks 29

Rally Documentation, Release 1.4.0

give Rally as much control as possible as benchmark are easier reproducible and you get more metrics. The following
table provides some guidance on when to choose which option:

Your requirement Recommendation
You want to use Rally’s
telemetry devices

Use Rally daemon, as it can provision the remote node for you

You want to benchmark
a source build of Elastic-
search

Use Rally daemon, as it can build Elasticsearch for you

You want to tweak the clus-
ter configuration yourself

Use Rally daemon with a custom configuration or set up the cluster by yourself and
use --pipeline=benchmark-only

You need to run a bench-
mark with plugins

Use Rally daemon if the plugins are supported or set up the cluster by yourself and
use --pipeline=benchmark-only

You need to run a bench-
mark against multiple nodes

Use Rally daemon if all nodes can be configured identically. For more complex
cases, set up the cluster by yourself and use --pipeline=benchmark-only

Rally daemon will be able to cover most of the cases described above in the future so there should be almost no case
where you need to use the benchmark-only pipeline.

2.8.3 Distributing the load test driver

By default, Rally will generate load on the same machine where you start a benchmark. However, when you are
benchmarking larger clusters, a single load test driver machine may not be able to generate sufficient load. In these
cases, you should use multiple load driver machines. We will use the following configuration for the example:

• You will start Rally on 10.5.5.5. We will call this machine the “benchmark coordinator”.

• You will start two load drivers on 10.5.5.6 and 10.5.5.7. Note that one load driver will simulate multiple
clients. Rally will simply assign clients to load driver machines in a round-robin fashion.

• Your Elasticsearch cluster will consist of three nodes which run on 10.5.5.11, 10.5.5.12 and 10.5.
5.13. We will call these machines the “benchmark candidate”. For simplicity, we will assume an externally
provisioned cluster but you can also use Rally to setup the cluster for you (see above).

30 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

1. Install and configure Rally on all machines. Be sure that the same version is installed on all of them and fully
configured.

2. Start the Rally daemon on each machine. The Rally daemon allows Rally to communicate with
all remote machines. On the benchmark coordinator run esrallyd start --node-ip=10.
5.5.5 --coordinator-ip=10.5.5.5 and on the load driver machines run esrallyd
start --node-ip=10.5.5.6 --coordinator-ip=10.5.5.5 and esrallyd start
--node-ip=10.5.5.7 --coordinator-ip=10.5.5.5 respectively. The --node-ip param-
eter tells Rally the IP of the machine on which it is running. As some machines have more than one network
interface, Rally will not attempt to auto-detect the machine IP. The --coordinator-ip parameter tells
Rally the IP of the benchmark coordinator node.

3. Start the benchmark by invoking Rally on the benchmark coordinator, for example: esrally
--pipeline=benchmark-only --load-driver-hosts=10.5.5.6,10.5.5.7
--target-hosts=10.5.5.11:9200,10.5.5.12:9200,10.5.5.13:9200.

2.8. Tips and Tricks 31

Rally Documentation, Release 1.4.0

4. After the benchmark has finished you can stop the Rally daemon again. On the benchmark coordinator and on
the load driver machines run esrallyd stop.

Note: Rally neither distributes code (i.e. custom runners or parameter sources) nor data automatically. You should
place all tracks and their data on all machines in the same directory before starting the benchmark. Alternatively, you
can store your track in a custom track repository.

Note: As indicated in the diagram, track data will be downloaded by each load driver machine separately. If
you want to avoid that, you can run a benchmark once without distributing the load test driver (i.e. do not spec-
ify --load-driver-hosts) and then copy the contents of ~/.rally/benchmarks/data to all load driver
machines.

2.8.4 Changing the default track repository

Rally supports multiple track repositories. This allows you for example to have a separate company-internal reposi-
tory for your own tracks that is separate from Rally’s default track repository. However, you always need to define
--track-repository=my-custom-repository which can be cumbersome. If you want to avoid that and
want Rally to use your own track repository by default you can just replace the default track repository definition in
~./rally/rally.ini. Consider this example:

...
[tracks]
default.url = git@github.com:elastic/rally-tracks.git
teamtrackrepo.url = git@example.org/myteam/my-tracks.git

If teamtrackrepo should be the default track repository, just define it as default.url. E.g.:

...
[tracks]
default.url = git@example.org/myteam/my-tracks.git
old-rally-default.url=git@github.com:elastic/rally-tracks.git

Also don’t forget to rename the folder of your local working copy as Rally will search for a track repository with the
name default:

cd ~/.rally/benchmarks/tracks/
mv default old-rally-default
mv teamtrackrepo default

From now on, Rally will treat your repository as default and you need to run Rally with
--track-repository=old-rally-default if you want to use the out-of-the-box Rally tracks.

2.8.5 Testing Rally against CCR clusters using a remote metric store

Testing Rally features (such as the ccr-stats telemetry device) requiring Elasticsearch clusters configured for
cross-cluster replication can be a time consuming process. Use recipes/ccr in Rally’s repository to test a simple but
complete example.

Running the start.sh script requires Docker locally installed and performs the following actions:

1. Starts a single node (512MB heap) Elasticsearch cluster locally, to serve as a metrics store. It also starts Kibana
attached to the Elasticsearch metric store cluster.

32 Chapter 2. Source Code

https://github.com/elastic/rally-tracks
https://www.elastic.co/guide/en/elastic-stack-overview/current/ccr-getting-started.html
https://github.com/elastic/rally/tree/master/recipes/ccr

Rally Documentation, Release 1.4.0

2. Creates a new configuration file for Rally under ~/.rally/rally-metricstore.ini referencing Elas-
ticsearch from step 1.

3. Starts two additional local Elasticsearch clusters with 1 node each, (version 7.3.2 by default) called leader
and follower listening at ports 32901 and 32902 respectively. Each node uses 1GB heap.

4. Accepts the trial license.

5. Configures leader on the follower as a remote cluster.

6. Sets an auto-follow pattern on the follower for every index on the leader to be replicated as
<leader-index-name>-copy.

7. Runs the geonames track, append-no-conflicts-index-only challenge challenge, ingesting only 20% of the corpus
using 3 primary shards. It also enables the ccr-stats telemetry device with a sample rate interval of 1s.

Rally will push metrics to the metric store configured in 1. and they can be visualized by accessing Kibana at
http://locahost:5601.

To tear down everything issue ./stop.sh.

It is possible to specify a different version of Elasticsearch for step 3. by setting export
ES_VERSION=<the_desired_version>.

2.9 Define Custom Workloads: Tracks

2.9.1 Definition

A track describes one or more benchmarking scenarios. Its structure is described in detail in the track reference.

2.9.2 Example track

We will create the track “tutorial” step by step. We store everything in the directory ~/rally-tracks/tutorial
but you can choose any other location.

First, get some data. Geonames provides geo data under a creative commons license. Download allCountries.zip
(around 300MB), extract it and inspect allCountries.txt.

The file is tab-delimited but to bulk-index data with Elasticsearch we need JSON. Convert the data with the following
script:

import json

cols = (("geonameid", "int", True),
("name", "string", True),
("asciiname", "string", False),
("alternatenames", "string", False),
("latitude", "double", True),
("longitude", "double", True),
("feature_class", "string", False),
("feature_code", "string", False),
("country_code", "string", True),
("cc2", "string", False),
("admin1_code", "string", False),
("admin2_code", "string", False),
("admin3_code", "string", False),
("admin4_code", "string", False),

(continues on next page)

2.9. Define Custom Workloads: Tracks 33

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-remote-clusters.html#configuring-remote-clusters
https://www.elastic.co/guide/en/elasticsearch/reference/current/ccr-put-auto-follow-pattern.html#ccr-put-auto-follow-pattern
https://github.com/elastic/rally-tracks/tree/master/geonames
https://github.com/elastic/rally-tracks/blob/d4814aa7bf54a9dafd4c77be076d54500c3f2dd4/geonames/challenges/default.json#L188-L222
http://localhost:5601
http://www.geonames.org/
http://creativecommons.org/licenses/by/3.0/
http://download.geonames.org/export/dump/allCountries.zip

Rally Documentation, Release 1.4.0

(continued from previous page)

("population", "long", True),
("elevation", "int", False),
("dem", "string", False),
("timezone", "string", False))

def main():
with open("allCountries.txt", "rt", encoding="UTF-8") as f:

for line in f:
tup = line.strip().split("\t")
record = {}
for i in range(len(cols)):

name, type, include = cols[i]
if tup[i] != "" and include:

if type in ("int", "long"):
record[name] = int(tup[i])

elif type == "double":
record[name] = float(tup[i])

elif type == "string":
record[name] = tup[i]

print(json.dumps(record, ensure_ascii=False))

if __name__ == "__main__":
main()

Store the script as toJSON.py in the tutorial directory (~/rally-tracks/tutorial). Invoke it with python3
toJSON.py > documents.json.

Then store the following mapping file as index.json in the tutorial directory:

{
"settings": {
"index.number_of_replicas": 0

},
"mappings": {
"docs": {

"dynamic": "strict",
"properties": {

"geonameid": {
"type": "long"

},
"name": {
"type": "text"

},
"latitude": {
"type": "double"

},
"longitude": {
"type": "double"

},
"country_code": {
"type": "text"

},
"population": {
"type": "long"

}

(continues on next page)

34 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

}
}

}
}

Note: This tutorial assumes that you want to benchmark a version of Elasticsearch prior to 7.0.0. If you want to
benchmark Elasticsearch 7.0.0 or later you need to remove the mapping type above.

For details on the allowed syntax, see the Elasticsearch documentation on mappings and the create index API.

Finally, store the track as track.json in the tutorial directory:

{
"version": 2,
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"types": ["docs"]

}
],
"corpora": [
{

"name": "rally-tutorial",
"documents": [

{
"source-file": "documents.json",
"document-count": 11658903,
"uncompressed-bytes": 1544799789

}
]

}
],
"schedule": [
{

"operation": {
"operation-type": "delete-index"

}
},
{

"operation": {
"operation-type": "create-index"

}
},
{

"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"

}
}

},
{

"operation": {

(continues on next page)

2.9. Define Custom Workloads: Tracks 35

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html

Rally Documentation, Release 1.4.0

(continued from previous page)

"operation-type": "bulk",
"bulk-size": 5000

},
"warmup-time-period": 120,
"clients": 8

},
{

"operation": {
"operation-type": "force-merge"

}
},
{

"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

The numbers under the documents property are needed to verify integrity and provide progress reports. Deter-
mine the correct document count with wc -l documents.json and the size in bytes with stat -f "%z"
documents.json.

Note: This tutorial assumes that you want to benchmark a version of Elasticsearch prior to 7.0.0. If you want to
benchmark Elasticsearch 7.0.0 or later you need to remove the types property above.

Note: You can store any supporting scripts along with your track. However, you need to place them in a directory
starting with “_”, e.g. “_support”. Rally loads track plugins (see below) from any directory but will ignore directories
starting with “_”.

Note: We have defined a JSON schema for tracks which you can use to check how to define your track. You should
also check the tracks provided by Rally for inspiration.

The new track appears when you run esrally list tracks --track-path=~/rally-tracks/
tutorial:

dm@io:~ $ esrally list tracks --track-path=~/rally-tracks/tutorial

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

(continues on next page)

36 Chapter 2. Source Code

https://github.com/elastic/rally/blob/master/esrally/resources/track-schema.json

Rally Documentation, Release 1.4.0

(continued from previous page)

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Available tracks:

Name Description Documents Compressed Size Uncompressed
→˓Size
---------- ----------------------------- ----------- --------------- --------------
→˓---
tutorial Tutorial benchmark for Rally 11658903 N/A 1.4 GB

You can also show details about your track with esrally info --track-path=~/rally-tracks/
tutorial:

dm@io:~ $ esrally info --track-path=~/rally-tracks/tutorial

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Showing details for track [tutorial]:

* Description: Tutorial benchmark for Rally

* Documents: 11,658,903

* Compressed Size: N/A

* Uncompressed Size: 1.4 GB

Schedule:

1. delete-index
2. create-index
3. cluster-health
4. bulk (8 clients)
5. force-merge
6. query-match-all (8 clients)

Congratulations, you have created your first track! You can test it with esrally
--distribution-version=6.0.0 --track-path=~/rally-tracks/tutorial.

2.9.3 Adding support for test mode

You can check your track very quickly for syntax errors when you invoke Rally with --test-mode. Rally postpro-
cesses its internal track representation as follows:

• Iteration-based tasks run at most one warmup iteration and one measurement iteration.

• Time-period-based tasks run at most for 10 seconds without warmup.

Rally also postprocesses all data file names. Instead of documents.json, Rally expects documents-1k.json
and assumes the file contains 1.000 documents. You need to prepare these data files though. Pick 1.000 documents
for every data file in your track and store them in a file with the suffix -1k. We choose the first 1.000 with head -n
1000 documents.json > documents-1k.json.

2.9. Define Custom Workloads: Tracks 37

Rally Documentation, Release 1.4.0

2.9.4 Challenges

To specify different workloads in the same track you can use so-called challenges. Instead of specifying the
schedule property on top-level you specify a challenges array:

{
"version": 2,
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"types": ["docs"]

}
],
"corpora": [
{

"name": "rally-tutorial",
"documents": [

{
"source-file": "documents.json",
"document-count": 11658903,
"uncompressed-bytes": 1544799789

}
]

}
],
"challenges": [
{

"name": "index-and-query",
"default": true,
"schedule": [

{
"operation": {

"operation-type": "delete-index"
}

},
{
"operation": {

"operation-type": "create-index"
}

},
{
"operation": {

"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"

}
}

},
{
"operation": {

"operation-type": "bulk",
"bulk-size": 5000

},
"warmup-time-period": 120,
"clients": 8

},
(continues on next page)

38 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

{
"operation": {
"operation-type": "force-merge"

}
},
{
"operation": {

"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}
]

}

Note: If you define multiple challenges, Rally runs the challenge where default is set to true. If you want to run
a different challenge, provide the command line option --challenge=YOUR_CHALLENGE_NAME.

When should you use challenges? Challenges are useful when you want to run completely different workloads based
on the same track but for the majority of cases you should get away without using challenges:

• To run only a subset of the tasks, you can use task filtering, e.g. --include-tasks="create-index,
bulk" will only run these two tasks in the track above or --exclude-tasks="bulk" will run all tasks
except for bulk.

• To vary parameters, e.g. the number of clients, you can use track parameters

2.9.5 Structuring your track

track.json is the entry point to a track but you can split your track as you see fit. Suppose you want to add more
challenges to the track but keep them in separate files. Create a challenges directory and store the following in
challenges/index-and-query.json:

{
"name": "index-and-query",
"default": true,
"schedule": [
{

"operation": {
"operation-type": "delete-index"

}
},
{

"operation": {
(continues on next page)

2.9. Define Custom Workloads: Tracks 39

Rally Documentation, Release 1.4.0

(continued from previous page)

"operation-type": "create-index"
}

},
{

"operation": {
"operation-type": "cluster-health",
"request-params": {
"wait_for_status": "green"

}
}

},
{

"operation": {
"operation-type": "bulk",
"bulk-size": 5000

},
"warmup-time-period": 120,
"clients": 8

},
{

"operation": {
"operation-type": "force-merge"

}
},
{

"operation": {
"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

Include the new file in track.json:

{
"version": 2,
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"types": ["docs"]

}
],
"corpora": [
{

"name": "rally-tutorial",
(continues on next page)

40 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

"documents": [
{
"source-file": "documents.json",
"document-count": 11658903,
"uncompressed-bytes": 1544799789

}
]

}
],
"challenges": [
{% include "challenges/index-and-query.json" %}

]
}

We replaced the challenge content with {% include "challenges/index-and-query.json" %} which
tells Rally to include the challenge from the provided file. You can use include on arbitrary parts of your track.

To reuse operation definitions across challenges, you can define them in a separate operations block and refer to
them by name in the corresponding challenge:

{
"version": 2,
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"types": ["docs"]

}
],
"corpora": [
{

"name": "rally-tutorial",
"documents": [

{
"source-file": "documents.json",
"document-count": 11658903,
"uncompressed-bytes": 1544799789

}
]

}
],
"operations": [
{

"name": "delete",
"operation-type": "delete-index"

},
{

"name": "create",
"operation-type": "create-index"

},
{

"name": "wait-for-green",
"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "green"
}

(continues on next page)

2.9. Define Custom Workloads: Tracks 41

Rally Documentation, Release 1.4.0

(continued from previous page)

},
{

"name": "bulk-index",
"operation-type": "bulk",
"bulk-size": 5000

},
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "query-match-all",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

}
],
"challenges": [
{% include "challenges/index-and-query.json" %}

]
}

challenges/index-and-query.json then becomes:

{
"name": "index-and-query",
"default": true,
"schedule": [
{

"operation": "delete"
},
{

"operation": "create"
},
{

"operation": "wait-for-green"
},
{

"operation": "bulk-index",
"warmup-time-period": 120,
"clients": 8

},
{

"operation": "force-merge"
},
{

"operation": "query-match-all",
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

42 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

Note how we reference to the operations by their name (e.g. create, bulk-index, force-merge or
query-match-all).

You can also use Rally’s collect helper to simplify including multiple challenges:

{% import "rally.helpers" as rally %}
{

"version": 2,
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"types": ["docs"]

}
],
"corpora": [
{

"name": "rally-tutorial",
"documents": [

{
"source-file": "documents.json",
"document-count": 11658903,
"uncompressed-bytes": 1544799789

}
]

}
],
"operations": [
{

"name": "delete",
"operation-type": "delete-index"

},
{

"name": "create",
"operation-type": "create-index"

},
{

"name": "wait-for-green",
"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "green"
}

},
{

"name": "bulk-index",
"operation-type": "bulk",
"bulk-size": 5000

},
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "query-match-all",
"operation-type": "search",
"body": {

"query": {

(continues on next page)

2.9. Define Custom Workloads: Tracks 43

Rally Documentation, Release 1.4.0

(continued from previous page)

"match_all": {}
}

}
}

],
"challenges": [
{{ rally.collect(parts="challenges/*.json") }}

]
}

The changes are:

1. We import helper functions from Rally by adding {% import "rally.helpers" as rally %} in line
1.

2. We use Rally’s collect helper to find and include all JSON files in the challenges subdirectory with the
statement {{ rally.collect(parts="challenges/*.json") }}.

Note: Rally’s log file contains the fully rendered track after it has loaded it successfully.

You can even use Jinja2 variables but then you need to import the Rally helpers a bit differently. You also need to
declare all variables before the import statement:

{% set clients = 16 %}
{% import "rally.helpers" as rally with context %}

If you use this idiom you can refer to the clients variable inside your snippets with {{ clients }}.

2.9.6 Sharing your track with others

So far the track is only available on your local machine. To share your track you could check it into version control.
To avoid committing the potentially huge data file you can expose it via http (e.g. via an S3 bucket) and reference
it in your track with the property base-url. Rally expects that the URL points to the parent path and appends the
document file name automatically.

You should also compress your document corpus to save network bandwidth; bzip2 works well. You can create a
compressed archive with the following command:

bzip2 -9 -c documents.json > documents.json.bz2

If you want to support Rally’s test mode, also compress your test mode corpus with:

bzip2 -9 -c documents-1k.json > documents-1k.json.bz2

Then upload documents.json.bz2 and documents-1k.json.bz2 to the remote location.

Finally, specify the compressed file name in the source-file property and also add the base-url property:

{
"version": 2,
"description": "Tutorial benchmark for Rally",
"corpora": [
{

"name": "rally-tutorial",

(continues on next page)

44 Chapter 2. Source Code

http://jinja.pocoo.org/docs/2.9/templates/#assignments

Rally Documentation, Release 1.4.0

(continued from previous page)

"documents": [
{
"base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/

→˓geonames",
"source-file": "documents.json.bz2",
"document-count": 11658903,
"compressed-bytes": 197857614,
"uncompressed-bytes": 1544799789

}
]

}
],
...

}

Specifying compressed-bytes (file size of documents.json.bz2) and uncompressed-bytes (file size
of documents.json) is optional but helps Rally to provide progress indicators and also verify integrity.

You’ve now mastered the basics of track development for Rally. It’s time to pat yourself on the back before you dive
into the advanced topics!

2.9.7 Advanced topics

Template Language

Rally uses Jinja2 as a template language so you can use Jinja2 expressions in track files.

Elasticsearch utilizes Mustache formatting in a few places, notably in search templates and Watcher templates. If you
are using Mustache in your Rally tracks you must escape them properly. See put-pipeline for an example.

Extensions

Rally also provides a few extensions to Jinja2:

• now: a global variable that represents the current date and time when the template is evaluated by Rally.

• days_ago(): a filter that you can use for date calculations.

You can find an example in the http_logs track:

{
"name": "range",
"index": "logs-*",
"type": "type",
"body": {

"query": {
"range": {
"@timestamp": {

"gte": "now-{{'15-05-1998' | days_ago(now)}}d/d",
"lt": "now/d"

}
}

}
}

(continues on next page)

2.9. Define Custom Workloads: Tracks 45

http://jinja.pocoo.org/docs/dev/
https://www.elastic.co/guide/en/elasticsearch/reference/7.4/search-template.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.4/actions-email.html
https://jinja.palletsprojects.com/en/2.10.x/templates/#escaping
http://jinja.pocoo.org/docs/dev/templates/#filters

Rally Documentation, Release 1.4.0

(continued from previous page)

}
}

The data set that is used in the http_logs track starts on 26-04-1998 but we want to ignore the first few days
for this query, so we start on 15-05-1998. The expression {{'15-05-1998' | days_ago(now)}} yields the
difference in days between now and the fixed start date and allows us to benchmark time range queries relative to now
with a predetermined data set.

Custom parameter sources

Warning: Your parameter source is on a performance-critical code-path. Double-check with Rally’s profiling
support that you did not introduce any bottlenecks.

Consider the following operation definition:

{
"name": "term",
"operation-type": "search",
"body": {
"query": {

"term": {
"body": "physician"

}
}

}
}

This query is defined statically but if you want to vary parameters, for example to search also for “mechanic” or “nurse,
you can write your own “parameter source” in Python.

First, define the name of your parameter source in the operation definition:

{
"name": "term",
"operation-type": "search",
"param-source": "my-custom-term-param-source"
"professions": ["mechanic", "physician", "nurse"]

}

Rally recognizes the parameter source and looks for a file track.py next to track.json. This file contains the
implementation of the parameter source:

import random

def random_profession(track, params, **kwargs):
choose a suitable index: if there is only one defined for this track
choose that one, but let the user always override index and type.
if len(track.indices) == 1:

default_index = track.indices[0].name
if len(track.indices[0].types) == 1:

default_type = track.indices[0].types[0].name
else:

(continues on next page)

46 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

default_type = None
else:

default_index = "_all"
default_type = None

index_name = params.get("index", default_index)
type_name = params.get("type", default_type)

you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(params["professions"])

}
}

},
"index": index_name,
"type": type_name,
"cache": params.get("cache", False)

}

def register(registry):
registry.register_param_source("my-custom-term-param-source", random_profession)

The example above shows a simple case that is sufficient if the operation to which your parameter source is applied is
idempotent and it does not matter whether two clients execute the same operation.

The function random_profession is the actual parameter source. Rally will bind the name “my-custom-term-
param-source” to this function by calling register. register is called by Rally before the track is executed.

The parameter source function needs to declare the parameters track, params and **kwargs. track contains
a structured representation of the current track and params contains all parameters that have been defined in the
operation definition in track.json. We use it in the example to read the professions to choose. The third parameter
is there to ensure a more stable API as Rally evolves.

We also derive an appropriate index and document type from the track’s index definitions but allow the user to override
this choice with the index or type parameters:

{
"name": "term",
"operation-type": "search",
"param-source": "my-custom-term-param-source"
"professions": ["mechanic", "physician", "nurse"],
"index": "employee*",
"type": "docs"

}

If you need more control, you need to implement a class. Below is the implementation of the same parameter source
as a class:

import random

class TermParamSource:
def __init__(self, track, params, **kwargs):

choose a suitable index: if there is only one defined for this track

(continues on next page)

2.9. Define Custom Workloads: Tracks 47

Rally Documentation, Release 1.4.0

(continued from previous page)

choose that one, but let the user always override index and type.
if len(track.indices) == 1:

default_index = track.indices[0].name
if len(track.indices[0].types) == 1:

default_type = track.indices[0].types[0].name
else:

default_type = None
else:

default_index = "_all"
default_type = None

we can eagerly resolve these parameters already in the constructor...
self._index_name = params.get("index", default_index)
self._type_name = params.get("type", default_type)
self._cache = params.get("cache", False)
... but we need to resolve "profession" lazily on each invocation later
self._params = params
Determines whether this parameter source will be "exhausted" at some point

→˓or
Rally can draw values infinitely from it.
self.infinite = True

def partition(self, partition_index, total_partitions):
return self

def params(self):
you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(self._params["professions"])

}
}

},
"index": self._index_name,
"type": self._type_name,
"cache": self._cache

}

def register(registry):
registry.register_param_source("my-custom-term-param-source", TermParamSource)

In register you bind the name in the track specification to your parameter source implementation class similar to
the previous example. TermParamSource is the actual parameter source and needs to fulfill a few requirements:

• The constructor needs to have the signature __init__(self, track, params, **kwargs).

• partition(self, partition_index, total_partitions) is called by Rally to “assign” the pa-
rameter source across multiple clients. Typically you can just return self. If each client needs to act differently
then you can provide different parameter source instances here as well.

• params(self): This method returns a dictionary with all parameters that the corresponding “runner” expects.
This method will be invoked once for every iteration during the race. In the example, we parameterize the query
by randomly selecting a profession from a list.

• infinite: This property helps Rally to determine whether to let the parameter source determine when a

48 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

task should be finished (when infinite is False) or whether the task properties (e.g. iterations or
time-period) determine when a task should be finished. In the former case, the parameter source needs to
raise StopIteration to indicate when it is finished.

For cases, where you want to provide a progress indication (this is typically the case when infinite is False),
you can implement a property percent_completed which returns a floating point value between 0.0 and 1.0.
Rally will query this value before each call to params() and uses it to indicate progress. However:

• Rally will not check percent_completed if it can derive progress in any other way.

• The value of percent_completed is purely informational and does not influence when Rally considers an
operation to be completed.

Note: The method params(self) as well as the property percent_completed are called on a performance-
critical path. Don’t do anything that takes a lot of time (avoid any I/O). For searches, you should usually throttle
throughput anyway and there it does not matter that much but if the corresponding operation is run without throughput
throttling, double-check that your custom parameter source does not introduce a bottleneck.

Custom parameter sources can use the Python standard API but using any additional libraries is not supported.

You can also implement your parameter sources and runners in multiple Python files but the main entry point is always
track.py. The root package name of your plugin is the name of your track.

Custom runners

Warning: Your runner is on a performance-critical code-path. Double-check with Rally’s profiling support that
you did not introduce any bottlenecks.

Runners execute an operation against Elasticsearch. Rally supports many operations out of the box already, see the
track reference for a complete list. If you want to call any other Elasticsearch API, define a custom runner.

Consider we want to use the percolate API with an older version of Elasticsearch which is not supported by Rally. To
achieve this, we implement a custom runner in the following steps.

In track.json set the operation-type to “percolate” (you can choose this name freely):

{
"name": "percolator_with_content_google",
"operation-type": "percolate",
"body": {
"doc": {

"body": "google"
},
"track_scores": true

}
}

Then create a file track.py next to track.json and implement the following two functions:

def percolate(es, params):
es.percolate(

index="queries",
doc_type="content",
body=params["body"]

(continues on next page)

2.9. Define Custom Workloads: Tracks 49

Rally Documentation, Release 1.4.0

(continued from previous page)

)

def register(registry):
registry.register_runner("percolate", percolate)

The function percolate is the actual runner and takes the following parameters:

• es, is an instance of the Elasticsearch Python client

• params is a dict of parameters provided by its corresponding parameter source. Treat this parameter as
read-only.

This function can return:

• Nothing at all. Then Rally will assume by default 1 and "ops" (see below).

• A tuple of weight and a unit, which is usually 1 and "ops". If you run a bulk operation you might return
the bulk size here, for example in number of documents or in MB. Then you’d return for example (5000,
"docs") Rally will use these values to store throughput metrics.

• A dict with arbitrary keys. If the dict contains the key weight it is assumed to be numeric and chosen as
weight as defined above. The key unit is treated similarly. All other keys are added to the meta section of the
corresponding service time and latency metrics records.

Similar to a parameter source you also need to bind the name of your operation type to the function within register.

If you need more control, you can also implement a runner class. The example above, implemented as a class looks as
follows:

class PercolateRunner:
def __call__(self, es, params):

es.percolate(
index="queries",
doc_type="content",
body=params["body"]

)

def __repr__(self, *args, **kwargs):
return "percolate"

def register(registry):
registry.register_runner("percolate", PercolateRunner())

The actual runner is implemented in the method __call__ and the same return value conventions apply as for
functions. For debugging purposes you should also implement __repr__ and provide a human-readable name for
your runner. Finally, you need to register your runner in the register function. Runners also support Python’s
context manager interface. Rally uses a new context for each request. Implementing the context manager interface can
be handy for cleanup of resources after executing an operation. Rally uses it, for example, to clear open scrolls.

If you have specified multiple Elasticsearch clusters using target-hosts you can make Rally pass a dictionary of client
connections instead of one for the default cluster in the es parameter.

To achieve this you need to:

• Use a runner class

• Specify multi_cluster = True as a class attribute

• Use any of the cluster names specified in target-hosts as a key for the es dict

50 Chapter 2. Source Code

https://docs.python.org/3/library/stdtypes.html#typecontextmanager

Rally Documentation, Release 1.4.0

Example (assuming Rally has been invoked specifying default and remote in target-hosts):

class CreateIndexInRemoteCluster:
multi_cluster = True

def __call__(self, es, params):
es['remote'].indices.create(index='remote-index')

def __repr__(self, *args, **kwargs):
return "create-index-in-remote-cluster"

def register(registry):
registry.register_runner("create-index-in-remote-cluster",

→˓CreateIndexInRemoteCluster())

Note: You need to implement register just once and register all parameter sources and runners there.

For cases, where you want to provide a progress indication, you can implement the two properties
percent_completed which returns a floating point value between 0.0 and 1.0 and the property completed
which needs to return True if the runner has completed. This can be useful in cases when it is only possible to
determine progress by calling an API, for example when waiting for a recovery to finish.

Warning: Rally will still treat such a runner like any other. If you want to poll status at certain intervals then limit
the number of calls by specifying the target-throughput property on the corresponding task.

Custom schedulers

Warning: Your scheduler is on a performance-critical code-path. Double-check with Rally’s profiling support
that you did not introduce any bottlenecks.

If you want to rate-limit execution of tasks, you can specify a target-throughput (in operations per second).
For example, Rally attempts to run this term query 20 times per second:

{
"operation": "term",
"target-throughput": 20

}

By default, Rally uses a deterministic distribution to determine when to schedule the next operation. Hence it executes
the term query at 0, 50ms, 100ms, 150ms and so on. The scheduler is also aware of the number of clients. Consider
this example:

{
"operation": "term",
"target-throughput": 20,
"clients": 4

}

If Rally would not take the number of clients into account and would still issue requests (from each of the four clients)
at the same points in time (i.e. 0, 50ms, 100ms, 150ms, . . .), it would run at a target throughput of 4 * 20 = 80
operations per second. Hence, Rally will automatically reduce the rate at which each client will execute requests.

2.9. Define Custom Workloads: Tracks 51

https://en.wikipedia.org/wiki/Degenerate_distribution

Rally Documentation, Release 1.4.0

Each client will issue requests at 0, 200ms, 400ms, 600ms, 800ms, 1000ms and so on. Each client issues five requests
per second but as there are four of them, we still have a target throughput of 20 operations per second. You should
keep this in mind, when writing your own custom schedules.

To create a custom scheduler, create a file track.py next to track.json and implement the following two func-
tions:

import random

def random_schedule(current):
return current + random.randint(10, 900) / 1000.0

def register(registry):
registry.register_scheduler("my_random", random_schedule)

You can then use your custom scheduler as follows:

{
"operation": "term",
"schedule": "my_random"

}

The function random_schedule returns a floating point number which represents the next point in time when Rally
should execute the given operation. This point in time is measured in seconds relative to the beginning of the execution
of this task. The parameter current is the last return value of your function and is 0.0 for the first invocation. So,
for example, this scheduler could return the following series: 0, 0.119, 0.622, 1.29, 1.343, 1.984, 2.233.

This implementation is usually not sufficient as it does not take into account the number of clients. Therefore, you
typically want to implement a full-blown scheduler which can also take parameters. Below is an example for our
random scheduler:

import random

class RandomScheduler:
def __init__(self, params):

assume one client by default
clients = params.get("clients", 1)
scale accordingly with the number of clients!
self.lower_bound = clients * params.get("lower-bound-millis", 10)
self.upper_bound = clients * params.get("upper-bound-millis", 900)

def next(self, current):
return current + random.randint(self.lower_bound, self.upper_bound) / 1000.0

def register(registry):
registry.register_scheduler("my_random", RandomScheduler)

This implementation achieves the same rate independent of the number of clients. Additionally, we can pass the lower
and upper bound for the random function from the track:

{
"operation": "term",
"schedule": "my_random",
"clients": 4,
"lower-bound-millis": 50,

(continues on next page)

52 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

"upper-bound-millis": 250
}

2.10 Developing Rally

2.10.1 Prerequisites

Install the following software packages:

• Python 3.5 or better available as python3 on the path (verify with: python3 --version)

• pip3 available on the path (verify with pip3 --version)

• virtualenv available on the path (verify with virtualenv --version)

• Pyenv installed and eval "$(pyenv init -)" is added to the shell configuration file. For more details
please refer to the PyEnv installation instructions.

• JDK version required to build Elasticsearch. Please refer to the build setup requirements.

• Docker and on Linux additionally docker-compose.

• git 1.9 or better

Check the installation guide for detailed installation instructions for these packages.

Rally does not support Windows and is only actively tested on MacOS and Linux.

2.10.2 Installation Instructions for Development

git clone https://github.com/elastic/rally.git
cd rally
make prereq
make install
source .venv/bin/activate
./rally

Known Issues

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Check the installation instructions of psutil in this case. Keep in mind that Rally is based
on Python 3 and you need to install the Python 3 header files instead of the Python 2 header files on Linux.

On MacOS Mojave the step make prereq might fail with the following message:

zipimport.ZipImportError: can't decompress data; zlib not available

This is a known issue with pyenv. Please see the Github issue for workarounds.

2.10. Developing Rally 53

https://github.com/pyenv/pyenv#installation
https://github.com/elastic/elasticsearch/blob/master/CONTRIBUTING.md#contributing-to-the-elasticsearch-codebase
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://github.com/giampaolo/psutil/blob/master/INSTALL.rst
https://github.com/pyenv/pyenv/issues/1219

Rally Documentation, Release 1.4.0

Automatic Updates

Rally has a built-in auto-update feature when you install it from sources. By default, it will up-
date from the remote named origin. If you want to auto-update from a different remote, provide
--update-from-remote=YOUR_REMOTE_NAME as first parameter.

To work conveniently with Rally, we suggest that you add the Rally project directory to your PATH. In case you use a
different remote, you should also define aliases in your shell’s config file, e.g.:

alias rally='rally --update-from-remote=elastic '
alias rallyd='rallyd --update-from-remote=elastic '

Then you can invoke Rally or the Rally daemon as usual and have auto-update still work.

Also note that automatic updates are disabled in the following cases:

• There are local (uncommitted) changes in the Rally project directory

• A different branch than master is checked out

• You have specified --skip-update as the first command line parameter

• You have specified --offline as a command line parameter for Rally

Configuring Rally

Before we can run our first benchmark, we have to configure Rally. Just invoke ./rally configure and Rally
will automatically detect that its configuration file is missing and prompt you for some values and write them to
~/.rally/rally.ini. After you’ve configured Rally, it will exit.

For more information see configuration help page.

2.10.3 Key Components of Rally

To get a rough understanding of Rally, it makes sense to get to know its key components:

• Race Control: is responsible for proper execution of the race. It sets up all components and acts as a high-level
controller.

• Mechanic: can build and prepare a benchmark candidate for the race. It checks out the source, builds Elastic-
search, provisions and starts the cluster.

• Track: is a concrete benchmarking scenario, e.g. the http_logs benchmark. It defines the data set to use.

• Challenge: is the specification on what benchmarks should be run and its configuration (e.g. index, then run a
search benchmark with 1000 iterations)

• Car: is a concrete system configuration for a benchmark, e.g. an Elasticsearch single-node cluster with default
settings.

• Driver: drives the race, i.e. it is executing the benchmark according to the track specification.

• Reporter: A reporter tells us how the race went (currently only after the fact).

There is a dedicated tutorial on how to add new tracks to Rally.

2.10.4 How to contribute code

See the contributors guide. We strive to be PEP-8 compliant but don’t follow it to the letter.

54 Chapter 2. Source Code

https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 1.4.0

2.11 Elasticsearch Version Support

2.11.1 Minimum supported version

Rally 1.4.0 can benchmark Elasticsearch 2.0.0 and above.

2.11.2 End-of-life Policy

The latest version of Rally allows to benchmark all currently supported versions of Elasticsearch. Once an Elastic-
search version reaches end-of-life, Rally will support benchmarking the corresponding version for two more years.
For example, Elasticsearch 1.7.x has been supported until 2017-01-16. Rally drops support for Elasticsearch 1.7.x two
years after that date on 2019-01-16. Version support is dropped in the next Rally maintenance release after that date.

2.11.3 Version-specific Limitations

The following features require at least Elasticsearch 5.0.0:

• Benchmarking with plugins

• Benchmarking source builds

2.12 Command Line Reference

You can control Rally with subcommands and command line flags:

• Subcommands determine which task Rally performs.

• Command line flags are used to change Rally’s behavior but not all command line flags can be used for each sub-
command. To find out which command line flags are supported by a specific subcommand, just run esrally
<<subcommand>> --help.

2.12.1 Subcommands

race

The race subcommand is used to actually run a benchmark. It is the default one and chosen implicitly if none is
given.

list

The list subcommand is used to list different configuration options:

• telemetry: Will show all telemetry devices that are supported by Rally.

• tracks: Will show all tracks that are supported by Rally. As this may depend on the Elastic-
search version that you want to benchmark, you can specify --distribution-version and also
--distribution-repository as additional options.

• pipelines: Will show all pipelines that are supported by Rally.

• races: Will show a list of the most recent races. This is needed for the tournament mode.

2.11. Elasticsearch Version Support 55

https://www.elastic.co/support/eol
https://www.elastic.co/support/eol

Rally Documentation, Release 1.4.0

• cars: Will show all cars that are supported by Rally (i.e. Elasticsearch configurations).

• elasticsearch-plugins: Will show all Elasticsearch plugins and their configurations that are supported by Rally.

To list a specific configuration option, place it after the list subcommand. For example, esrally list
pipelines will list all pipelines known to Rally.

info

The info subcommand prints details about a track. Example:

esrally info --track=noaa --challenge=append-no-conflicts

This will print:

Showing details for track [noaa]:

* Description: Global daily weather measurements from NOAA

* Documents: 33,659,481

* Compressed Size: 947.3 MB

* Uncompressed Size: 9.0 GB

==
Challenge [append-no-conflicts] (run by default)
==

Indexes the whole document corpus using Elasticsearch default settings. We only
→˓adjust the number of replicas as we benchmark a single node cluster and Rally will
→˓only start the benchmark if the cluster turns green and we want to ensure that we
→˓don't use the query cache. Document ids are unique so all index operations are
→˓append only. After that a couple of queries are run.

Schedule:

1. delete-index
2. create-index
3. check-cluster-health
4. index (8 clients)
5. refresh-after-index
6. force-merge
7. refresh-after-force-merge
8. range_field_big_range
9. range_field_small_range
10. range_field_conjunction_big_range_small_term_query
11. range_field_conjunction_small_range_small_term_query
12. range_field_conjunction_small_range_big_term_query
13. range_field_conjunction_big_range_big_term_query
14. range_field_disjunction_small_range_small_term_query
15. range_field_disjunction_big_range_small_term_query

It is also possible to use task filters (e.g. --include-tasks) or to refer to a track via its path (--track-path)
or use a different track repository (--track-repository).

compare

This subcommand is needed for tournament mode and its usage is described there.

56 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

configure

This subcommand is needed to configure Rally. It is implicitly chosen if you start Rally for the first time but you can
rerun this command at any time.

download

This subcommand can be used to download Elasticsearch distributions. Example:

esrally download --distribution-version=6.8.0 --quiet

This will download the OSS distribution of Elasticsearch 6.8.0. Because --quiet is specified, Rally will suppress all
non-essential output (banners, progress messages etc.) and only return the location of the binary on the local machine
after it has downloaded it:

{
"elasticsearch": "/Users/dm/.rally/benchmarks/distributions/elasticsearch-oss-6.8.0.

→˓tar.gz"
}

To download the default distribution you need to specify a license (via --car):

esrally download --distribution-version=6.8.0 --car=basic-license --quiet

This will show the path to the default distribution:

{
"elasticsearch": "/Users/dm/.rally/benchmarks/distributions/elasticsearch-6.8.0.tar.

→˓gz"
}

install

Warning: This subcommand is experimental. Expect the functionality and the command line interface to change
significantly even in patch releases.

This subcommand can be used to install a single Elasticsearch node. Example:

esrally install --quiet --distribution-version=7.4.2 --node-name="rally-node-0" --
→˓network-host="127.0.0.1" --http-port=39200 --master-nodes="rally-node-0" --seed-
→˓hosts="127.0.0.1:39300"

This will output the id of this installation:

{
"installation-id": "69ffcfee-6378-4090-9e93-87c9f8ee59a7"

}

Please see the cluster management tutorial for the intended use and a complete walkthrough.

2.12. Command Line Reference 57

Rally Documentation, Release 1.4.0

start

Warning: This subcommand is experimental. Expect the functionality and the command line interface to change
significantly even in patch releases.

This subcommand can be used to start a single Elasticsearch node that has been previously installed with the install
subcommand. Example:

esrally start --installation-id=INSTALLATION_ID --race-id=RACE_ID

INSTALLATION_ID is the installation id value as shown in the output of the install command. The RACE_ID
can be chosen freely but is required to be the same for all nodes in a cluster.

Please see the cluster management tutorial for the intended use and a complete walkthrough.

stop

Warning: This subcommand is experimental. Expect the functionality and the command line interface to change
significantly even in patch releases.

This subcommand can be used to stop a single Elasticsearch node that has been previously started with the start
subcommand. Example:

esrally stop --installation-id=INSTALLATION_ID

INSTALLATION_ID is the installation id value as shown in the output of the install command.

Please see the cluster management tutorial for the intended use and a complete walkthrough.

2.12.2 Command Line Flags

track-path

Can be either a directory that contains a track.json file or a .json file with an arbitrary name that contains a track
specification. --track-path and --track-repository as well as --track are mutually exclusive. See the
track reference to decide whether you should use --track-path or --track-repository / --track.

Examples:

provide a directory - Rally searches for a track.json file in this directory
Track name is "app-logs"
esrally --track-path=~/Projects/tracks/app-logs
provide a file name - Rally uses this file directly
Track name is "syslog"
esrally --track-path=~/Projects/tracks/syslog.json

track-repository

Selects the track repository that Rally should use to resolve tracks. By default the default track repository is used,
which is available in the Github project rally-tracks. See the track reference on how to add your own track repositories.

58 Chapter 2. Source Code

https://github.com/elastic/rally-tracks

Rally Documentation, Release 1.4.0

--track-path and --track-repository as well as --track are mutually exclusive.

track-revision

Selects a specific revision in the track repository. By default, Rally will choose the most appropriate branch on its own
but in some cases it is necessary to specify a certain commit. This is mostly needed when testing whether a change in
performance has occurred due to a change in the workload.

track

Selects the track that Rally should run. By default the geonames track is run. For more details on how tracks work,
see adding tracks or the track reference. --track-path and --track-repository as well as --track are
mutually exclusive.

track-params

With this parameter you can inject variables into tracks. The supported variables depend on the track and you should
check the track JSON file to see which variables can be provided.

It accepts a list of comma-separated key-value pairs or a JSON file name. The key-value pairs have to be delimited by
a colon.

Examples:

Consider the following track snippet showing a single challenge:

{
"name": "index-only",
"schedule": [

{
"operation": {
"operation-type": "bulk",
"bulk-size": {{ bulk_size|default(5000) }}

},
"warmup-time-period": 120,
"clients": {{ clients|default(8) }}

}
]

}

Rally tracks can use the Jinja templating language and the construct {{ some_variable|default(0) }} that
you can see above is a feature of Jinja to define default values for variables.

We can see that it defines two variables:

• bulk_size with a default value of 5000

• clients with a default value of 8

When we run this track, we can override these defaults:

• --track-params="bulk_size:2000,clients:16" will set the bulk size to 2000 and the number of
clients for bulk indexing to 16.

• --track-params="bulk_size:8000" will just set the bulk size to 8000 and keep the default value of 8
clients.

• --track-params="params.json" will read the track parameters from a JSON file (defined below)

2.12. Command Line Reference 59

http://jinja.pocoo.org/docs/2.10/templates/#default

Rally Documentation, Release 1.4.0

Example JSON file:

{
"bulk_size": 2000,
"clients": 16

}

All track parameters are recorded for each metrics record in the metrics store. Also, when you run esrally list
races, it will show all track parameters:

Race Timestamp Track Track Parameters Challenge Car
→˓User Tag
---------------- ------- ------------------------- ------------------- -------- --
→˓-------
20160518T122341Z pmc bulk_size=8000 append-no-conflicts defaults
20160518T112341Z pmc bulk_size=2000,clients=16 append-no-conflicts defaults

Note that the default values are not recorded or shown (Rally does not know about them).

challenge

A track consists of one or more challenges. With this flag you can specify which challenge should be run. If you don’t
specify a challenge, Rally derives the default challenge itself. To see the default challenge of a track, run esrally
list tracks.

race-id

A unique identifier for this race. By default a random UUID is automatically chosen by Rally.

installation-id

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

A unique identifier for an installation. This id is automatically generated by Rally when the install subcommand
is invoked and needs to be provided in the start and stop subcommands in order to refer to that installation.

node-name

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

Used to specify the current node’s name in the cluster when it is setup via the install subcommand.

60 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

network-host

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

Used to specify the IP address to which the current cluster node should bind to when it is setup via the install
subcommand.

http-port

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

Used to specify the port on which the current cluster node should listen for HTTP traffic when it is setup via the
install subcommand. The corresponding transport port will automatically be chosen by Rally and is always the
specified HTTP port + 100.

master-nodes

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

A comma-separated list that specifies the node names of the master nodes in the cluster when a node is setup via the
install subcommand. Example:

--master-nodes="rally-node-0,rally-node-1,rally-node-2"

This will treat the nodes named rally-node-0, rally-node-1 and rally-node-2 as initial master nodes.

seed-hosts

Warning: This command line parameter is experimental. Expect the functionality and the command line interface
to change significantly even in patch releases.

A comma-separated list if IP:transport port pairs used to specify the seed hosts in the cluster when a node is setup
via the install subcommand. See the Elasticsearch documentation for a detailed explanation of the seed hosts
parameter. Example:

--seed-hosts="192.168.14.77:39300,192.168.14.78:39300,192.168.14.79:39300"

2.12. Command Line Reference 61

https://www.elastic.co/guide/en/elasticsearch/reference/current/discovery-settings.html#initial_master_nodes
https://www.elastic.co/guide/en/elasticsearch/reference/current/discovery-settings.html#unicast.hosts

Rally Documentation, Release 1.4.0

include-tasks

Each challenge consists of one or more tasks but sometimes you are only interested to run a subset of all tasks. For
example, you might have prepared an index already and want only to repeatedly run search benchmarks. Or you want
to run only the indexing task but nothing else.

You can use --include-tasks to specify a comma-separated list of tasks that you want to run. Each item in
the list defines either the name of a task or the operation type of a task. Only the tasks that match will be executed.
Currently there is also no command that lists the tasks of a challenge so you need to look at the track source.

Examples:

• Execute only the tasks with the name index and term: --include-tasks="index,term"

• Execute only tasks of type search: --include-tasks="type:search"

• You can also mix and match: --include-tasks="index,type:search"

exclude-tasks

Similarly to include-tasks when a challenge consists of one or more tasks you might be interested in excluding a single
operations but include the rest.

You can use --exclude-tasks to specify a comma-separated list of tasks that you want to skip. Each item in the
list defines either the name of a task or the operation type of a task. Only the tasks that did not match will be executed.

Examples:

• Skip any tasks with the name index and term: --exclude-tasks="index,term"

• Skip any tasks of type search: --exclude-tasks="type:search"

• You can also mix and match: --exclude-tasks="index,type:search"

team-repository

Selects the team repository that Rally should use to resolve cars. By default the default team repository is used,
which is available in the Github project rally-teams. See the documentation about cars on how to add your own team
repositories.

team-revision

Selects a specific revision in the team repository. By default, Rally will choose the most appropriate branch on its own
(see the car reference for more details) but in some cases it is necessary to specify a certain commit. This is mostly
needed when benchmarking specific historic commits of Elasticsearch which are incompatible with the current master
branch of the team repository.

team-path

A directory that contains a team configuration. --team-path and --team-repository are mutually exclusive.
See the car reference for the required directory structure.

Example:

esrally --team-path=~/Projects/es-teams

62 Chapter 2. Source Code

https://github.com/elastic/rally-teams

Rally Documentation, Release 1.4.0

target-os

Specifies the name of the target operating system for which an artifact should be downloaded. By default this value
is automatically derived based on the operating system Rally is run. This command line flag is only applicable to the
download subcommand and allows to download an artifact for a different operating system. Example:

esrally download --distribution-version=7.5.1 --target-os=linux

target-arch

Specifies the name of the target CPU architecture for which an artifact should be downloaded. By default this value
is automatically derived based on the CPU architecture Rally is run. This command line flag is only applicable to the
download subcommand and allows to download an artifact for a different CPU architecture. Example:

esrally download --distribution-version=7.5.1 --target-arch=x86_64

car

A car defines the Elasticsearch configuration that will be used for the benchmark. To see a list of possible cars, issue
esrally list cars. You can specify one or multiple comma-separated values.

Example

esrally --car="4gheap,ea"

Rally will configure Elasticsearch with 4GB of heap (4gheap) and enable Java assertions (ea).

car-params

Allows to override config variables of Elasticsearch. It accepts a list of comma-separated key-value pairs or a JSON
file name. The key-value pairs have to be delimited by a colon.

Example

esrally --car="4gheap" --car-params="data_paths:'/opt/elasticsearch'"

The variables that are exposed depend on the car’s configuration. In addition, Rally implements special handling for
the variable data_paths (by default the value for this variable is determined by Rally).

elasticsearch-plugins

A comma-separated list of Elasticsearch plugins to install for the benchmark. If a plugin supports multiple configura-
tions you need to specify the configuration after the plugin name. To see a list of possible plugins and configurations,
issue esrally list elasticsearch-plugins.

Example:

esrally --elasticsearch-plugins="analysis-icu,xpack:security"

In this example, Rally will install the analysis-icu plugin and the x-pack plugin with the security configu-
ration. See the reference documentation about Elasticsearch plugins for more details.

2.12. Command Line Reference 63

https://github.com/elastic/rally-teams/tree/master/cars

Rally Documentation, Release 1.4.0

plugin-params

Allows to override variables of Elasticsearch plugins. It accepts a list of comma-separated key-value pairs or a JSON
file name. The key-value pairs have to be delimited by a colon.

Example:

esrally --distribution-version=6.1.1. --elasticsearch-plugins="x-pack:monitoring-http
→˓" --plugin-params="monitoring_type:'https',monitoring_host:'some_remote_host',
→˓monitoring_port:10200,monitoring_user:'rally',monitoring_password:'m0n1t0r1ng'"

This enables the HTTP exporter of X-Pack Monitoring and exports the data to the configured monitoring host.

pipeline

Selects the pipeline that Rally should run.

Rally can autodetect the pipeline in most cases. If you specify --distribution-version it will auto-select the
pipeline from-distribution otherwise it will use from-sources-complete.

enable-driver-profiling

This option enables a profiler on all tasks that the load test driver performs. It is intended to help track authors
spot accidental bottlenecks, especially if they implement their own runners or parameter sources. When this mode is
enabled, Rally will enable a profiler in the load driver module. After each task and for each client, Rally will add the
profile information to a dedicated profile log file. For example:

2017-02-09 08:23:24,35 rally.profile INFO
=== Profile START for client [0] and task [index-append-1000] ===

16052402 function calls (15794402 primitive calls) in 180.221 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
130 0.001 0.000 168.089 1.293 /Users/dm/Projects/rally/esrally/driver/

→˓driver.py:908(time_period_based)
129 0.260 0.002 168.088 1.303 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/bulk_source.py:79(params)
129000 0.750 0.000 167.791 0.001 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:142(generate_event)
516000 0.387 0.000 160.485 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/weightedarray.py:20(get_random)
516000 6.199 0.000 160.098 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/weightedarray.py:23(__random_index)
516000 1.292 0.000 152.289 0.000 /usr/local/Cellar/python3/3.6.0/

→˓Frameworks/Python.framework/Versions/3.6/lib/python3.6/random.py:96(seed)
516000 150.783 0.000 150.783 0.000 {function Random.seed at 0x10b7fa2f0}
129000 0.363 0.000 45.686 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:48(add_fields)
129000 0.181 0.000 41.742 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:79(add_fields)
....

=== Profile END for client [0] and task [index-append-1000] ===

In this example we can spot quickly that Random.seed is called excessively, causing an accidental bottleneck in the
load test driver.

64 Chapter 2. Source Code

https://www.elastic.co/products/x-pack/monitoring

Rally Documentation, Release 1.4.0

test-mode

Allows you to test a track without running it for the whole duration. This mode is only intended for quick sanity
checks when creating a track. Don’t rely on these numbers at all (they are meaningless).

If you write your own track you need to prepare your track to support this mode.

telemetry

Activates the provided telemetry devices for this race.

Example

esrally --telemetry=jfr,jit

This activates Java flight recorder and the JIT compiler telemetry devices.

telemetry-params

Allows to set parameters for telemetry devices. It accepts a list of comma-separated key-value pairs or a JSON file
name. The key-value pairs have to be delimited by a colon. See the telemetry devices documentation for a list of
supported parameters.

Example:

esrally --telemetry=jfr --telemetry-params="recording-template:'profile'"

This enables the Java flight recorder telemetry device and sets the recording-template parameter to “profile”.

For more complex cases specify a JSON file. Store the following as telemetry-params.json:

{
"node-stats-sample-interval": 10,
"node-stats-include-indices-metrics": "completion,docs,fielddata"

}

and reference it when running Rally:

esrally --telemetry="node-stats" --telemetry-params="telemetry-params.json"

runtime-jdk

By default, Rally will derive the appropriate runtime JDK versions automatically per version of Elasticsearch. For
example, it will choose JDK 8 or 7 for Elasticsearch 2.x but only JDK 8 for Elasticsearch 5.0.0. It will choose the
highest available version.

This command line parameter sets the major version of the JDK that Rally should use to run Elasticsearch. It is
required that either JAVA_HOME or JAVAx_HOME (where x is the major version, e.g. JAVA8_HOME for a JDK 8)
points to the appropriate JDK.

Example:

Run a benchmark with defaults (i.e. JDK 8)
esrally --distribution-version=2.4.0
Force to run with JDK 7
esrally --distribution-version=2.4.0 --runtime-jdk=7

2.12. Command Line Reference 65

Rally Documentation, Release 1.4.0

It is also possible to specify the JDK that is bundled with Elasticsearch with the special value bundled. The JDK is
bundled from Elasticsearch 7.0.0 onwards.

revision

If you actively develop Elasticsearch and want to benchmark a source build of Elasticsearch (which Rally will create
for you), you can specify the git revision of Elasticsearch that you want to benchmark. But note that Rally uses and
expects the Gradle Wrapper in the Elasticsearch repository (./gradlew) which effectively means that it will only
support this for Elasticsearch 5.0 or better. The default value is current.

You can specify the revision in different formats:

• --revision=latest: Use the HEAD revision from origin/master.

• --revision=current: Use the current revision (i.e. don’t alter the local source tree).

• --revision=abc123: Where abc123 is some git revision hash.

• --revision=@2013-07-27T10:37:00Z: Determines the revision that is closest to the provided date.
Rally logs to which git revision hash the date has been resolved and if you use Elasticsearch as metrics store
(instead of the default in-memory one), each metric record will contain the git revision hash also in the meta-
data section.

Supported date format: If you specify a date, it has to be ISO-8601 conformant and must start with an @ sign to make
it easier for Rally to determine that you actually mean a date.

If you want to create source builds of Elasticsearch plugins, you need to specify the revision for Elasticsearch and
all relevant plugins separately. Revisions for Elasticsearch and each plugin need to be comma-separated (,). Each
revision is prefixed either by elasticsearch or by the plugin name and separated by a colon (:). As core plugins
are contained in the Elasticsearch repo, there is no need to specify a revision for them (the revision would even be
ignored in fact).

Examples:

• Build latest Elasticsearch and plugin “my-plugin”: --revision="elasticsearch:latest,
my-plugin:latest"

• Build Elasticsearch tag v5.6.1 and revision abc123 of plugin “my-plugin”:
--revision="elasticsearch:v5.6.1,my-plugin:abc123"

Note that it is still required to provide the parameter --elasticsearch-plugins. Specifying a plugin with
--revision just tells Rally which revision to use for building the artifact. See the documentation on Elasticsearch
plugins for more details.

distribution-version

If you want Rally to launch and benchmark a cluster using a binary distribution, you can specify the version here.

Note: Do not use distribution-version when benchmarking a cluster that hasn’t been setup by Rally (i.e.
together with pipeline=benchmark-only); Rally automatically derives and stores the version of the cluster in
the metrics store regardless of the pipeline used.

Example

esrally --distribution-version=2.3.3

66 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/release-highlights-7.0.0.html#_bundle_jdk_in_elasticsearch_distribution
https://www.elastic.co/guide/en/elasticsearch/reference/current/release-highlights-7.0.0.html#_bundle_jdk_in_elasticsearch_distribution

Rally Documentation, Release 1.4.0

Rally will then benchmark the official Elasticsearch 2.3.3 distribution. Please check our version support page to see
which Elasticsearch versions are currently supported by Rally.

distribution-repository

Rally does not only support benchmarking official distributions but can also benchmark snapshot builds. This is
option is really just intended for our benchmarks that are run in continuous integration but if you want to, you can
use it too. The only supported value out of the box is release (default) but you can define arbitrary repositories in
~/.rally/rally.ini.

Example

Say, you have an in-house repository where Elasticsearch snapshot builds get published. Then you can add the follow-
ing in the distributions section of your Rally config file:

in_house_snapshot.url = https://www.example.org/snapshots/elasticsearch/elasticsearch-
→˓{{VERSION}}.tar.gz
in_house_snapshot.cache = false

The url property defines the URL pattern for this repository. The cache property defines whether Rally should al-
ways download a new archive (cache=false) or just reuse a previously downloaded version (cache=true). Rally
will replace the {{VERSION}} placeholder of in the url property with the value of distribution-version
provided by the user on the command line.

You can use this distribution repository with the name “in_house_snapshot” as follows:

esrally --distribution-repository=in_house_snapshot --distribution-version=7.0.0-
→˓SNAPSHOT

This will benchmark the latest 7.0.0 snapshot build of Elasticsearch.

report-format

The command line reporter in Rally displays a table with key metrics after a race. With this option you can specify
whether this table should be in markdown format (default) or csv.

show-in-report

By default, the command line reporter will only show values that are available (available). With all you can
force it to show a line for every value, even undefined ones, and with all-percentiles it will show only available
values but force output of all possible percentile values.

This command line parameter is not available for comparing races.

report-file

By default, the command line reporter will print the results only on standard output, but can also write it to a file.

Example

esrally --report-format=csv --report-file=~/benchmarks/result.csv

2.12. Command Line Reference 67

https://elasticsearch-benchmarks.elastic.co/

Rally Documentation, Release 1.4.0

client-options

With this option you can customize Rally’s internal Elasticsearch client.

It accepts a list of comma-separated key-value pairs. The key-value pairs have to be delimited by a colon. These
options are passed directly to the Elasticsearch Python client API. See their documentation on a list of supported
options.

We support the following data types:

• Strings: Have to be enclosed in single quotes. Example: ca_certs:'/path/to/CA_certs'

• Numbers: There is nothing special about numbers. Example: sniffer_timeout:60

• Booleans: Specify either true or false. Example: use_ssl:true

Default value: timeout:60

Warning: If you provide your own client options, the default value will not be magically merged. You have to
specify all client options explicitly. The only exceptions to this rule is ca_cert (see below).

Examples

Here are a few common examples:

• Enable HTTP compression: --client-options="http_compress:true"

• Enable basic authentication: --client-options="basic_auth_user:'user',
basic_auth_password:'password'". Avoid the characters ', , and : in user name and password as
Rally’s parsing of these options is currently really simple and there is no possibility to escape characters.

TLS/SSL

This is applicable e.g. if you have X-Pack Security installed. Enable it with use_ssl:true.

TLS/SSL Certificate Verification

Server certificate verification is controlled with the verify_certs boolean. The default value is true. To disable use
verify_certs:false. If verify_certs:true, Rally will attempt to verify the certificate provided by Elas-
ticsearch. If they are private certificates, you will also need to supply the private CA certificate using ca_certs:'/
path/to/cacert.pem'.

You can also optionally present client certificates, e.g. if Elasticsearch has been configured with xpack.security.
http.ssl.client_authentication: required (see also Elasticsearch HTTP TLS/SSL settings). Client
certificates can be presented regardless of the verify_certs setting, but it’s strongly recommended to always verify
the server certificates.

TLS/SSL Examples

• Enable SSL, verify server certificates using public CA: --client-options="use_ssl:true,
verify_certs:true". Note that you don’t need to set ca_cert (which defines the path to the root
certificates). Rally does this automatically for you.

• Enable SSL, verify server certificates using private CA: --client-options="use_ssl:true,
verify_certs:true,ca_certs:'/path/to/cacert.pem'"

• Enable SSL, verify server certificates using private CA, present client certificates:
--client-options="use_ssl:true,verify_certs:true,ca_certs:'/path/to/
cacert.pem',client_cert:'/path/to/client_cert.pem',client_key:'/path/to/
client_key.pem'"

68 Chapter 2. Source Code

http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/security-settings.html#http-tls-ssl-settings

Rally Documentation, Release 1.4.0

on-error

This option controls whether Rally will continue or abort when a request error occurs. By default, Rally will just
record errors and report the error rate at the end of a race. With --on-error=abort, Rally will immediately abort
the race on the first error and print a detailed error message.

load-driver-hosts

By default, Rally will run its load driver on the same machine where you start the benchmark. However, if you
benchmark larger clusters, one machine may not be enough to generate sufficient load. Hence, you can specify a
comma-separated list of hosts which should be used to generate load with --load-driver-hosts.

Example

esrally --load-driver-hosts=10.17.20.5,10.17.20.6

In the example, above Rally will generate load from the hosts 10.17.20.5 and 10.17.20.6. For this to work,
you need to start a Rally daemon on these machines, see distributing the load test driver for a complete example.

target-hosts

If you run the benchmark-only pipeline or you want Rally to benchmark a remote cluster, then you can specify a
comma-delimited list of hosts:port pairs to which Rally should connect. The default value is 127.0.0.1:9200.

Example

esrally --pipeline=benchmark-only --target-hosts=10.17.0.5:9200,10.17.0.
→˓6:9200

This will run the benchmark against the hosts 10.17.0.5 and 10.17.0.6 on port 9200. See client-options if you
use X-Pack Security and need to authenticate or Rally should use https.

You can also target multiple clusters with --target-hosts for specific use cases. This is described in the Advanced
topics section.

limit

Allows to control the number of races returned by esrally list races The default value is 10.

Example

The following invocation will list the 50 most recent races:

esrally list races --limit=50

quiet

Suppresses some output on the command line.

offline

Tells Rally that it should assume it has no connection to the Internet when checking for track data. The default value
is false. Note that Rally will only assume this for tracks but not for anything else, e.g. it will still try to download
Elasticsearch distributions that are not locally cached or fetch the Elasticsearch source tree.

2.12. Command Line Reference 69

Rally Documentation, Release 1.4.0

preserve-install

Rally usually installs and launches an Elasticsearch cluster internally and wipes the entire directory after the benchmark
is done. Sometimes you want to keep this cluster including all data after the benchmark has finished and that’s what
you can do with this flag. Note that depending on the track that has been run, the cluster can eat up a very significant
amount of disk space (at least dozens of GB). The default value is configurable in the advanced configuration but
usually false.

Note: This option does only affect clusters that are provisioned by Rally. More specifically, if you use the pipeline
benchmark-only, this option is ineffective as Rally does not provision a cluster in this case.

advanced-config

This flag determines whether Rally should present additional (advanced) configuration options. The default value is
false.

Example

esrally configure --advanced-config

assume-defaults

This flag determines whether Rally should automatically accept all values for configuration options that provide a
default. This is mainly intended to configure Rally automatically in CI runs. The default value is false.

Example

esrally configure --assume-defaults=true

user-tag

This is only relevant when you want to run tournaments. You can use this flag to attach an arbitrary text to the meta-
data of each metric record and also the corresponding race. This will help you to recognize a race when you run
esrally list races as you don’t need to remember the concrete timestamp on which a race has been run but
can instead use your own descriptive names.

The required format is key “:” value. You can choose key and value freely.

Example

esrally --user-tag="intention:github-issue-1234-baseline,gc:cms"

You can also specify multiple tags. They need to be separated by a comma.

Example

esrally --user-tag="disk:SSD,data_node_count:4"

When you run esrally list races, this will show up again:

70 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

Race Timestamp Track Track Parameters Challenge Car User Tag
---------------- ------- ------------------ ------------------- -------- ---------
→˓---------------------------
20160518T122341Z pmc append-no-conflicts defaults
→˓intention:github-issue-1234-baseline
20160518T112341Z pmc append-no-conflicts defaults disk:SSD,
→˓data_node_count:4

This will help you recognize a specific race when running esrally compare.

2.12.3 Advanced topics

target-hosts

Rally can also create client connections for multiple Elasticsearch clusters. This is only useful if you want to create
custom runners that execute operations against multiple clusters, for example for cross cluster search or cross cluster
replication.

To define the host:port pairs for additional clusters with target-hosts you can specify either a JSON filename
(ending in .json) or an inline JSON string. The JSON object should be a collection of name:value pairs. name is
string for the cluster name and there must be one default.

Examples:

• json file: --target-hosts="target_hosts1.json":

{ "default": ["127.0.0.1:9200","10.127.0.3:19200"] }

• json file defining two clusters: --target-hosts="target_hosts2.json":

{
"default": [

{"host": "127.0.0.1", "port": 9200},
{"host": "127.0.0.1", "port": 19200}

],
"remote":[

{"host": "10.127.0.3", "port": 9200},
{"host": "10.127.0.8", "port": 9201}

]
}

• json inline string defining two clusters:

--target-hosts="{\"default\":[\"127.0.0.1:9200\"],\"remote\":[\"127.0.0.1:19200\",
→˓\"127.0.0.1:19201\"]}"

Note: All built-in operations will use the connection to the default cluster. However, you can utilize the client
connections to the additional clusters in your custom runners.

client-options

client-options can optionally specify options for the Elasticsearch clients when multiple clusters have been
defined with target-hosts. If omitted, the default is timeout:60 for all cluster connections.

2.12. Command Line Reference 71

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-cross-cluster-search.html

Rally Documentation, Release 1.4.0

The format is similar to target-hosts, supporting both filenames ending in .json or inline JSON, however, the
parameters are a collection of name:value pairs, as opposed to arrays.

Examples, assuming that two clusters have been specified with --target-hosts:

• json file: --client-options="client_options1.json":

{
"default": {

"timeout": 60
},
"remote": {

"use_ssl": true,
"verify_certs": false,
"ca_certs": "/path/to/cacert.pem"

}
}

• json inline string defining two clusters:

--client-options="{\"default\":{\"timeout\": 60}, \"remote\": {\"use_ssl\":true,\
→˓"verify_certs\":false,\"ca_certs\":\"/path/to/cacert.pem\"}}"

Warning: If you use client-options you must specify options for every cluster name defined with
target-hosts. Rally will raise an error if there is a mismatch.

2.13 Offline Usage

In some corporate environments servers do not have Internet access. You can still use Rally in such environments and
this page summarizes all information that you need to get started.

2.13.1 Installation and Configuration

We provide a special offline installation package. Follow the offline installation guide and configure Rally as usual
afterwards.

2.13.2 Command Line Usage

Rally will automatically detect upon startup that no Internet connection is available and print the following warning:

[WARNING] No Internet connection detected. Automatic download of track data sets etc.
→˓is disabled.

It detects this by trying to connect to github.com. If you want to disable this probing you can explicitly specify
--offline.

2.13.3 Using tracks

A Rally track describes a benchmarking scenario. You can either write your own tracks or use the tracks that Rally
provides out of the box. In the former case, Rally will work just fine in an offline environment. In the latter case,

72 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

Rally would normally download the track and its associated data from the Internet. If you want to use one of Rally’s
standard tracks in offline mode, you need to download all relevant files first on a machine that has Internet access and
copy it to the target machine(s).

Use the download script to download all data for a track on a machine that has access to the Internet. Example:

downloads the script from Github
curl -O https://raw.githubusercontent.com/elastic/rally-tracks/master/download.sh
chmod u+x download.sh
download all data for the geonames track
./download.sh geonames

This will download all data for the geonames track and create a tar file rally-track-data-geonames.tar in
the current directory. Copy this file to the home directory of the user which will execute Rally on the target machine
(e.g. /home/rally-user).

On the target machine, run:

cd ~
tar -xf rally-track-data-geonames.tar

The download script does not require a Rally installation on the machine with Internet access but assumes that git
and curl are available.

After you’ve copied the data, you can list the available tracks with esrally list tracks. If a track shows up in
this list, it just means that the track description is available locally but not necessarily all data files.

2.13.4 Using cars

Note: You can skip this section if you use Rally only as a load generator.

If you have Rally configure and start Elasticsearch then you also need the out-of-the-box configurations available. Run
the following command on a machine with Internet access:

git clone https://github.com/elastic/rally-teams.git ~/.rally/benchmarks/teams/default
tar -C ~ -czf rally-teams.tar.gz .rally/benchmarks/teams/default

Copy that file to the target machine(s) and run on the target machine:

cd ~
tar -xzf rally-teams.tar.gz

After you’ve copied the data, you can list the available tracks with esrally list cars.

2.14 Track Reference

2.14.1 Definition

A track is a specification of one or more benchmarking scenarios with a specific document corpus. It defines for
example the involved indices, data files and the operations that are invoked. Its most important attributes are:

• One or more indices, each with one or more types

• The queries to issue

2.14. Track Reference 73

https://raw.githubusercontent.com/elastic/rally-tracks/master/download.sh

Rally Documentation, Release 1.4.0

• Source URL of the benchmark data

• A list of steps to run, which we’ll call “challenge”, for example indexing data with a specific number of docu-
ments per bulk request or running searches for a defined number of iterations.

2.14.2 Track File Format and Storage

A track is specified in a JSON file.

Ad-hoc use

For ad-hoc use you can store a track definition anywhere on the file system and reference it with --track-path,
e.g:

provide a directory - Rally searches for a track.json file in this directory
Track name is "app-logs"
esrally --track-path=~/Projects/tracks/app-logs
provide a file name - Rally uses this file directly
Track name is "syslog"
esrally --track-path=~/Projects/tracks/syslog.json

Rally will also search for additional files like mappings or data files in the provided directory. If you use advanced
features like custom runners or parameter sources we recommend that you create a separate directory per track.

Custom Track Repositories

Alternatively, you can store Rally tracks also in a dedicated git repository which we call a “track repository”. Rally
provides a default track repository that is hosted on Github. You can also add your own track repositories although this
requires a bit of additional work. First of all, track repositories need to be managed by git. The reason is that Rally
can benchmark multiple versions of Elasticsearch and we use git branches in the track repository to determine the
best match for each track (based on the command line parameter --distribution-version). The versioning
scheme is as follows:

• The master branch needs to work with the latest master branch of Elasticsearch.

• All other branches need to match the version scheme of Elasticsearch, i.e. MAJOR.MINOR.PATCH-SUFFIX
where all parts except MAJOR are optional.

Rally implements a fallback logic so you don’t need to define a branch for each patch release of Elasticsearch. For
example:

• The branch 6.0.0-alpha1 will be chosen for the version 6.0.0-alpha1 of Elasticsearch.

• The branch 5 will be chosen for all versions for Elasticsearch with the major version 5, e.g. 5.0.0, 5.1.3
(provided there is no specific branch).

Rally tries to use the branch with the best match to the benchmarked version of Elasticsearch.

Rally will also search for related files like mappings or custom runners or parameter sources in the track repos-
itory. However, Rally will use a separate directory to look for data files (~/.rally/benchmarks/data/
$TRACK_NAME/). The reason is simply that we do not want to check multi-GB data files into git.

Creating a new track repository

All track repositories are located in ~/.rally/benchmarks/tracks. If you want to add a dedicated track
repository, called private follow these steps:

74 Chapter 2. Source Code

https://github.com/elastic/rally-tracks

Rally Documentation, Release 1.4.0

cd ~/.rally/benchmarks/tracks
mkdir private
cd private
git init
add your track now
git add .
git commit -m "Initial commit"

If you want to share your tracks with others you need to add a remote and push it:

git remote add origin git@git-repos.acme.com:acme/rally-tracks.git
git push -u origin master

If you have added a remote you should also add it in ~/.rally/rally.ini, otherwise you can skip this step.
Open the file in your editor of choice and add the following line in the section tracks:

private.url = <<URL_TO_YOUR_ORIGIN>>

If you specify --track-repository=private, Rally will check whether there is a directory ~/.rally/
benchmarks/tracks/private. If there is none, it will use the provided URL to clone the repo. However, if
the directory already exists, the property gets ignored and Rally will just update the local tracking branches before the
benchmark starts.

You can now verify that everything works by listing all tracks in this track repository:

esrally list tracks --track-repository=private

This shows all tracks that are available on the master branch of this repository. Suppose you only created tracks
on the branch 2 because you’re interested in the performance of Elasticsearch 2.x, then you can specify also the
distribution version:

esrally list tracks --track-repository=private --distribution-version=2.0.0

Rally will follow the same branch fallback logic as described above.

Adding an already existing track repository

If you want to add a track repository that already exists, just open ~/.rally/rally.ini in your editor of choice
and add the following line in the section tracks:

your_repo_name.url = <<URL_TO_YOUR_ORIGIN>>

After you have added this line, have Rally list the tracks in this repository:

esrally list tracks --track-repository=your_repo_name

When to use what?

We recommend the following path:

• Start with a simple json file. The file name can be arbitrary.

• If you need custom runners or parameter sources, create one directory per track. Then you can keep everything
that is related to one track in one place. Remember that the track JSON file needs to be named track.json.

2.14. Track Reference 75

Rally Documentation, Release 1.4.0

• If you want to version your tracks so they can work with multiple versions of Elasticsearch (e.g. you are running
benchmarks before an upgrade), use a track repository.

2.14.3 Anatomy of a track

A track JSON file consists of the following sections:

• indices

• templates

• corpora

• operations

• schedule

In the indices and templates sections you define the relevant indices and index templates. These sections are
optional but recommended if you want to create indices and index templates with the help of Rally.

In the corpora section you define all document corpora (i.e. data files) that Rally should use for this track.

In the operations section you describe which operations are available for this track and how they are parametrized.
This section is optional and you can also define any operations directly per challenge. You can use it, if you want to
share operation definitions between challenges.

In the schedule section you describe the workload for the benchmark, for example index with two clients at max-
imum throughput while searching with another two clients with ten operations per second. The schedule either uses
the operations defined in the operations block or defines the operations to execute inline.

2.14.4 Track elements

The track elements that are described here are defined in Rally’s JSON schema for tracks. Rally uses this track schema
to validate your tracks when it is loading them.

Each track defines the following info attributes:

• version (optional): An integer describing the track specification version in use. Rally uses it to detect in-
compatible future track specification versions and raise an error. See the table below for a reference of valid
versions.

• description (optional): A human-readable description of the track. Although it is optional, we recommend
providing it.

Track Specification Version Rally version
1 >=0.7.3, <0.10.0
2 >=0.9.0

The version property has been introduced with Rally 0.7.3. Rally versions before 0.7.3 do not recognize this
property and thus cannot detect incompatible track specification versions.

Example:

{
"version": 2,
"description": "POIs from Geonames"

}

76 Chapter 2. Source Code

https://github.com/elastic/rally/blob/master/esrally/resources/track-schema.json

Rally Documentation, Release 1.4.0

meta

For each track, an optional structure, called meta can be defined. You are free which properties this element should
contain.

This element can also be defined on the following elements:

• challenge

• operation

• task

If the meta structure contains the same key on different elements, more specific ones will override the same key of
more generic elements. The order from generic to most specific is:

1. track

2. challenge

3. operation

4. task

E.g. a key defined on a task, will override the same key defined on a challenge. All properties defined within the
merged meta structure, will get copied into each metrics record.

indices

The indices section contains a list of all indices that are used by this track.

Each index in this list consists of the following properties:

• name (mandatory): The name of the index.

• body (optional): File name of the corresponding index definition that will be used as body in the create index
API call.

• types (optional): A list of type names in this index. Types have been removed in Elasticsearch 7.0.0 so you
must not specify this property if you want to benchmark Elasticsearch 7.0.0 or later.

Example:

"indices": [
{

"name": "geonames",
"body": "geonames-index.json",
"types": ["docs"]

}
]

templates

The templates section contains a list of all index templates that Rally should create.

• name (mandatory): Index template name

• index-pattern (mandatory): Index pattern that matches the index template. This must match the definition
in the index template file.

• delete-matching-indices (optional, defaults to true): Delete all indices that match the provided index
pattern before start of the benchmark.

2.14. Track Reference 77

Rally Documentation, Release 1.4.0

• template (mandatory): Index template file name

Example:

"templates": [
{

"name": "my-default-index-template",
"index-pattern": "my-index-*",
"delete-matching-indices": true,
"template": "default-template.json"

}
]

corpora

The corpora section contains all document corpora that are used by this track. Note that you can reuse document
corpora across tracks; just copy & paste the respective corpora definitions. It consists of the following properties:

• name (mandatory): Name of this document corpus. As this name is also used by Rally in directory names,
it is recommended to only use lower-case names without whitespaces for maximum compatibility across file
systems.

• documents (mandatory): A list of documents files.

Each entry in the documents list consists of the following properties:

• base-url (optional): A http(s) or S3 URL that points to the root path where Rally can obtain the corresponding
source file. Rally can also download data from private S3 buckets if access is properly configured.

• source-format (optional, default: bulk): Defines in which format Rally should interpret the data file
specified by source-file. Currently, only bulk is supported.

• source-file (mandatory): File name of the corresponding documents. For local use, this file can be a .
json file. If you provide a base-url we recommend that you provide a compressed file here. The following
extensions are supported: .zip, .bz2, .gz, .tar, .tar.gz, .tgz or .tar.bz2. It must contain exactly
one JSON file with the same name. The preferred file extension for our official tracks is .bz2.

• includes-action-and-meta-data (optional, defaults to false): Defines whether the documents file
contains already an action and meta-data line (true) or only documents (false).

• document-count (mandatory): Number of documents in the source file. This number is used by Rally to
determine which client indexes which part of the document corpus (each of the N clients gets one N-th of the
document corpus). If you are using parent-child, specify the number of parent documents.

• compressed-bytes (optional but recommended): The size in bytes of the compressed source file. This
number is used to show users how much data will be downloaded by Rally and also to check whether the
download is complete.

• uncompressed-bytes (optional but recommended): The size in bytes of the source file after decompres-
sion. This number is used by Rally to show users how much disk space the decompressed file will need and to
check that the whole file could be decompressed successfully.

• target-index: Defines the name of the index which should be targeted for bulk operations. Rally will
automatically derive this value if you have defined exactly one index in the indices section. Ignored if
includes-action-and-meta-data is true.

• target-type (optional): Defines the name of the document type which should be targeted for bulk opera-
tions. Rally will automatically derive this value if you have defined exactly one index in the indices section
and this index has exactly one type. Ignored if includes-action-and-meta-data is true. Types have

78 Chapter 2. Source Code

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration

Rally Documentation, Release 1.4.0

been removed in Elasticsearch 7.0.0 so you must not specify this property if you want to benchmark Elastic-
search 7.0.0 or later.

To avoid repetition, you can specify default values on document corpus level for the following properties:

• base-url

• source-format

• includes-action-and-meta-data

• target-index

• target-type

Examples

Here we define a single document corpus with one set of documents:

"corpora": [
{
"name": "geonames",
"documents": [

{
"base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/

→˓geonames",
"source-file": "documents.json.bz2",
"document-count": 11396505,
"compressed-bytes": 264698741,
"uncompressed-bytes": 3547614383,
"target-index": "geonames",
"target-type": "docs"

}
]

}
]

We can also define default values on document corpus level but override some of them (base-url for the last entry):

"corpora": [
{
"name": "http_logs",
"base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/http_

→˓logs",
"target-type": "docs",
"documents": [

{
"source-file": "documents-181998.json.bz2",
"document-count": 2708746,
"target-index": "logs-181998"

},
{

"source-file": "documents-191998.json.bz2",
"document-count": 9697882,
"target-index": "logs-191998"

},
{

"base-url": "http://example.org/corpora/http_logs",
"source-file": "documents-201998.json.bz2",
"document-count": 13053463,
"target-index": "logs-201998"

(continues on next page)

2.14. Track Reference 79

Rally Documentation, Release 1.4.0

(continued from previous page)

}
]

}
]

operations

The operations section contains a list of all operations that are available later when specifying a schedule. Op-
erations define the static properties of a request against Elasticsearch whereas the schedule element defines the
dynamic properties (such as the target throughput).

Each operation consists of the following properties:

• name (mandatory): The name of this operation. You can choose this name freely. It is only needed to reference
the operation when defining schedules.

• operation-type (mandatory): Type of this operation. See below for the operation types that are supported
out of the box in Rally. You can also add arbitrary operations by defining custom runners.

• include-in-reporting (optional, defaults to true for normal operations and to false for administra-
tive operations): Whether or not this operation should be included in the command line report. For example you
might want Rally to create an index for you but you are not interested in detailed metrics about it. Note that
Rally will still record all metrics in the metrics store.

Depending on the operation type a couple of further parameters can be specified.

bulk

With the operation type bulk you can execute bulk requests. It supports the following properties:

• bulk-size (mandatory): Defines the bulk size in number of documents.

• ingest-percentage (optional, defaults to 100): A number between (0, 100] that defines how much of the
document corpus will be bulk-indexed.

• corpora (optional): A list of document corpus names that should be targeted by this bulk-index operation.
Only needed if the corpora section contains more than one document corpus and you don’t want to index all
of them with this operation.

• indices (optional): A list of index names that defines which indices should be used by this bulk-index opera-
tion. Rally will then only select the documents files that have a matching target-index specified.

• batch-size (optional): Defines how many documents Rally will read at once. This is an expert setting and
only meant to avoid accidental bottlenecks for very small bulk sizes (e.g. if you want to benchmark with a
bulk-size of 1, you should set batch-size higher).

• pipeline (optional): Defines the name of an (existing) ingest pipeline that should be used (only supported
from Elasticsearch 5.0).

• conflicts (optional): Type of index conflicts to simulate. If not specified, no conflicts will be simulated
(also read below on how to use external index ids with no conflicts). Valid values are: ‘sequential’ (A document
id is replaced with a document id with a sequentially increasing id), ‘random’ (A document id is replaced with
a document id with a random other id).

• conflict-probability (optional, defaults to 25 percent): A number between [0, 100] that de-
fines how many of the documents will get replaced. Combining conflicts=sequential and

80 Chapter 2. Source Code

http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html

Rally Documentation, Release 1.4.0

conflict-probability=0 makes Rally generate index ids by itself, instead of relying on Elasticsearch’s
automatic id generation.

• on-conflict (optional, defaults to index): Determines whether Rally should use the action index or
update on id conflicts.

• recency (optional, defaults to 0): A number between [0,1] indicating whether to bias conflicting ids towards
more recent ids (recency towards 1) or whether to consider all ids for id conflicts (recency towards 0). See
the diagram below for details.

• detailed-results (optional, defaults to false): Records more detailed meta-data for bulk requests. As
it analyzes the corresponding bulk response in more detail, this might incur additional overhead which can skew
measurement results.

The image below shows how Rally behaves with a recency set to 0.5. Internally, Rally uses the blue function for its
calculations but to understand the behavior we will focus on red function (which is just the inverse). Suppose we have
already generated ids from 1 to 100 and we are about to simulate an id conflict. Rally will randomly choose a value
on the y-axis, e.g. 0.8 which is mapped to 0.1 on the x-axis. This means that in 80% of all cases, Rally will choose an
id within the most recent 10%, i.e. between 90 and 100. With 20% probability the id will be between 1 and 89. The
closer recency gets to zero, the “flatter” the red curve gets and the more likely Rally will choose less recent ids.

You can also explore the recency calculation interactively.

Example:

{
"name": "index-append",
"operation-type": "bulk",
"bulk-size": 5000

}

2.14. Track Reference 81

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html#_automatic_id_generation
https://www.desmos.com/calculator/zlzieypanv

Rally Documentation, Release 1.4.0

Throughput will be reported as number of indexed documents per second.

force-merge

With the operation type force-merge you can call the force merge API. On older versions of Elasticsearch (prior
to 2.1), Rally will use the optimize API instead. It supports the following parameter:

• max-num-segments (optional) The number of segments the index should be merged into. Defaults to simply
checking if a merge needs to execute, and if so, executes it.

This is an administrative operation. Metrics are not reported by default. If reporting is forced by setting
include-in-reporting to true, then throughput is reported as the number of completed force-merge oper-
ations per second.

index-stats

With the operation type index-stats you can call the indices stats API. It does not support any parameters.

Throughput will be reported as number of completed index-stats operations per second.

node-stats

With the operation type nodes-stats you can execute nodes stats API. It does not support any parameters.

Throughput will be reported as number of completed node-stats operations per second.

search

With the operation type search you can execute request body searches. It supports the following properties:

• index (optional): An index pattern that defines which indices should be targeted by this query. Only needed if
the index section contains more than one index. Otherwise, Rally will automatically derive the index to use.
If you have defined multiple indices and want to query all of them, just specify "index": "_all".

• type (optional): Defines the type within the specified index for this query. By default, no type will be used
and the query will be performed across all types in the provided index. Also, types have been removed in
Elasticsearch 7.0.0 so you must not specify this property if you want to benchmark Elasticsearch 7.0.0 or later.

• cache (optional): Whether to use the query request cache. By default, Rally will define no value thus the
default depends on the benchmark candidate settings and Elasticsearch version.

• request-params (optional): A structure containing arbitrary request parameters. The supported parameters
names are documented in the Search URI Request docs.

Note:

1. Parameters that are implicitly set by Rally (e.g. body or request_cache) are not supported (i.e.
you should not try to set them and if so expect unspecified behavior).

2. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

• body (mandatory): The query body.

82 Chapter 2. Source Code

http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-stats.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-uri-request.html#_parameters_3

Rally Documentation, Release 1.4.0

• pages (optional): Number of pages to retrieve. If this parameter is present, a scroll query will be executed. If
you want to retrieve all result pages, use the value “all”.

• results-per-page (optional): Number of documents to retrieve per page for scroll queries.

Example:

{
"name": "default",
"operation-type": "search",
"body": {
"query": {

"match_all": {}
}

},
"request-params": {
"_source_include": "some_field",
"analyze_wildcard": "false"

}
}

For scroll queries, throughput will be reported as number of retrieved scroll pages per second. The unit is ops/s,
where one op(eration) is one page that has been retrieved. The rationale is that each HTTP request corresponds to
one operation and we need to issue one HTTP request per result page. Note that if you use a dedicated Elasticsearch
metrics store, you can also use other request-level meta-data such as the number of hits for your own analyses.

For other queries, throughput will be reported as number of search requests per second, also measured as ops/s.

put-pipeline

With the operation-type put-pipeline you can execute the put pipeline API. Note that this API is only available
from Elasticsearch 5.0 onwards. It supports the following properties:

• id (mandatory): Pipeline id

• body (mandatory): Pipeline definition

In this example we setup a pipeline that adds location information to a ingested document as well as a pipeline failure
block to change the index in which the document was supposed to be written. Note that we need to use the raw and
endraw blocks to ensure that Rally does not attempt to resolve the Mustache template. See template language for
more information.

Example:

{
"name": "define-ip-geocoder",
"operation-type": "put-pipeline",
"id": "ip-geocoder",
"body": {
"description": "Extracts location information from the client IP.",
"processors": [

{
"geoip": {
"field": "clientip",
"properties": [

"city_name",
"country_iso_code",
"country_name",

(continues on next page)

2.14. Track Reference 83

https://www.elastic.co/guide/en/elasticsearch/reference/current/put-pipeline-api.html

Rally Documentation, Release 1.4.0

(continued from previous page)

"location"
]

}
}

],
"on_failure": [

{
"set": {
"field": "_index",
{% raw %}
"value": "failed-{{ _index }}"
{% endraw %}

}
}

]
}

}

Please see the pipeline documentation for details on handling failures in pipelines.

This example requires that the ingest-geoip Elasticsearch plugin is installed.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

put-settings

With the operation-type put-settings you can execute the cluster update settings API. It supports the following
properties:

• body (mandatory): The cluster settings to apply.

Example:

{
"name": "increase-watermarks",
"operation-type": "put-settings",
"body": {
"transient" : {

"cluster.routing.allocation.disk.watermark.low" : "95%",
"cluster.routing.allocation.disk.watermark.high" : "97%",
"cluster.routing.allocation.disk.watermark.flood_stage" : "99%"

}
}

}

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

cluster-health

With the operation cluster-health you can execute the cluster health API. It supports the following properties:

• request-params (optional): A structure containing any request parameters that are allowed by the cluster
health API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

84 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/handling-failure-in-pipelines.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-update-settings.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html

Rally Documentation, Release 1.4.0

• index (optional): The name of the index that should be used to check.

The cluster-health operation will check whether the expected cluster health and will report a failure if this is
not the case. Use --on-error on the command line to control Rally’s behavior in case of such failures.

Example:

{
"name": "check-cluster-green",
"operation-type": "cluster-health",
"index": "logs-*",
"request-params": {
"wait_for_status": "green",
"wait_for_no_relocating_shards": "true"

}
}

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

refresh

With the operation refresh you can execute the refresh API. It supports the following properties:

• index (optional, defaults to _all): The name of the index that should be refreshed.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

create-index

With the operation create-index you can execute the create index API. It supports two modes: it creates either all
indices that are specified in the track’s indices section or it creates one specific index defined by this operation.

If you want it to create all indices that have been declared in the indices section you can specify the following
properties:

• settings (optional): Allows to specify additional index settings that will be merged with the index settings
specified in the body of the index in the indices section.

• request-params (optional): A structure containing any request parameters that are allowed by the create
index API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

If you want it to create one specific index instead, you can specify the following properties:

• index (mandatory): One or more names of the indices that should be created. If only one index should be
created, you can use a string otherwise this needs to be a list of strings.

• body (optional): The body for the create index API call.

• request-params (optional): A structure containing any request parameters that are allowed by the create
index API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

Examples

The following snippet will create all indices that have been defined in the indices section. It will reuse all settings
defined but override the number of shards:

2.14. Track Reference 85

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html

Rally Documentation, Release 1.4.0

{
"name": "create-all-indices",
"operation-type": "create-index",
"settings": {
"index.number_of_shards": 1

},
"request-params": {
"wait_for_active_shards": "true"

}
}

With the following snippet we will create a new index that is not defined in the indices section. Note that we specify
the index settings directly in the body:

{
"name": "create-an-index",
"operation-type": "create-index",
"index": "people",
"body": {
"settings": {

"index.number_of_shards": 0
},
"mappings": {

"docs": {
"properties": {
"name": {

"type": "text"
}

}
}

}
}

}

Note: Types have been removed in Elasticsearch 7.0.0. If you want to benchmark Elasticsearch 7.0.0 or later you
need to remove the mapping type above.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

delete-index

With the operation delete-index you can execute the delete index API. It supports two modes: it deletes either
all indices that are specified in the track’s indices section or it deletes one specific index (pattern) defined by this
operation.

If you want it to delete all indices that have been declared in the indices section, you can specify the following
properties:

• only-if-exists (optional, defaults to true): Defines whether an index should only be deleted if it exists.

• request-params (optional): A structure containing any request parameters that are allowed by the delete
index API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

If you want it to delete one specific index (pattern) instead, you can specify the following properties:

86 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-delete-index.html

Rally Documentation, Release 1.4.0

• index (mandatory): One or more names of the indices that should be deleted. If only one index should be
deleted, you can use a string otherwise this needs to be a list of strings.

• only-if-exists (optional, defaults to true): Defines whether an index should only be deleted if it exists.

• request-params (optional): A structure containing any request parameters that are allowed by the delete
index API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” / “false”
strings for boolean parameters (see example below).

Examples

With the following snippet we will delete all indices that are declared in the indices section but only if they existed
previously (implicit default):

{
"name": "delete-all-indices",
"operation-type": "delete-index"

}

With the following snippet we will delete all logs-* indices:

{
"name": "delete-logs",
"operation-type": "delete-index",
"index": "logs-*",
"only-if-exists": false,
"request-params": {
"expand_wildcards": "all",
"allow_no_indices": "true",
"ignore_unavailable": "true"

}
}

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

create-index-template

With the operation create-index-template you can execute the create index template API. It supports two
modes: it creates either all index templates that are specified in the track’s templates section or it creates one
specific index template defined by this operation.

If you want it to create index templates that have been declared in the templates section you can specify the
following properties:

• template (optional): If you specify a template name, only the template with this name will be created.

• settings (optional): Allows to specify additional settings that will be merged with the settings specified in
the body of the index template in the templates section.

• request-params (optional): A structure containing any request parameters that are allowed by the create
index template API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” /
“false” strings for boolean parameters (see example below).

If you want it to create one specific index instead, you can specify the following properties:

• template (mandatory): The name of the index template that should be created.

• body (mandatory): The body for the create index template API call.

2.14. Track Reference 87

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-templates.html

Rally Documentation, Release 1.4.0

• request-params (optional): A structure containing any request parameters that are allowed by the create
index template API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” /
“false” strings for boolean parameters (see example below).

Examples

The following snippet will create all index templates that have been defined in the templates section:

{
"name": "create-all-templates",
"operation-type": "create-index-template",
"request-params": {
"create": "true"

}
}

With the following snippet we will create a new index template that is not defined in the templates section. Note
that we specify the index template settings directly in the body:

{
"name": "create-a-template",
"operation-type": "create-index-template",
"template": "defaults",
"body": {
"index_patterns": ["*"],
"settings": {

"number_of_shards": 3
},
"mappings": {

"docs": {
"_source": {
"enabled": false

}
}

}
}

}

Note: Types have been removed in Elasticsearch 7.0.0. If you want to benchmark Elasticsearch 7.0.0 or later you
need to remove the mapping type above.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

delete-index-template

With the operation delete-index-template you can execute the delete index template API. It supports two
modes: it deletes either all index templates that are specified in the track’s templates section or it deletes one
specific index template defined by this operation.

If you want it to delete all index templates that have been declared in the templates section, you can specify the
following properties:

• only-if-exists (optional, defaults to true): Defines whether an index template should only be deleted if
it exists.

88 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-delete-index.html

Rally Documentation, Release 1.4.0

• request-params (optional): A structure containing any request parameters that are allowed by the delete
index template API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” /
“false” strings for boolean parameters.

If you want it to delete one specific index template instead, you can specify the following properties:

• template (mandatory): The name of the index that should be deleted.

• only-if-exists (optional, defaults to true): Defines whether the index template should only be deleted
if it exists.

• delete-matching-indices (optional, defaults to false): Whether to delete indices that match the index
template’s index pattern.

• index-pattern (mandatory iff delete-matching-indices is true): Specifies the index pattern to
delete.

• request-params (optional): A structure containing any request parameters that are allowed by the delete
index template API. Rally will not attempt to serialize the parameters and pass them as is. Always use “true” /
“false” strings for boolean parameters.

Examples

With the following snippet we will delete all index templates that are declared in the templates section but only if
they existed previously (implicit default):

{
"name": "delete-all-index-templates",
"operation-type": "delete-index-template"

}

With the following snippet we will delete the default‘ index template:

{
"name": "delete-default-template",
"operation-type": "delete-index-template",
"template": "default",
"only-if-exists": false,
"delete-matching-indices": true,
"index-pattern": "*"

}

Note: If delete-matching-indices is set to true, indices with the provided index-pattern are deleted
regardless whether the index template has previously existed.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

shrink-index

With the operation shrink-index you can execute the shrink index API. Note that this does not correspond directly
to the shrink index API call in Elasticsearch but it is a high-level operation that executes all the necessary low-level
operations under the hood to shrink an index. It supports the following parameters:

• source-index (mandatory): The name of the index that should be shrinked.

• target-index (mandatory): The name of the index that contains the shrinked shards.

2.14. Track Reference 89

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-shrink-index.html

Rally Documentation, Release 1.4.0

• target-body (mandatory): The body containing settings and aliases for target-index.

• shrink-node (optional, defaults to a random data node): As a first step, the source index needs to be fully
relocated to a single node. Rally will automatically choose a random data node in the cluster but you can choose
one explicitly if needed.

Example:

{
"operation-type": "shrink-index",
"shrink-node": "rally-node-0",
"source-index": "src",
"target-index": "target",
"target-body": {
"settings": {

"index.number_of_replicas": 1,
"index.number_of_shards": 1,
"index.codec": "best_compression"

}
}

}

This will shrink the index src to target. The target index will consist of one shard and have one replica. With
shrink-node we also explicitly specify the name of the node where we want the source index to be relocated to.

delete-ml-datafeed

With the operation delete-ml-datafeed you can execute the delete datafeeds API. The
delete-ml-datafeed operation supports the following parameters:

• datafeed-id (mandatory): The name of the machine learning datafeed to delete.

• force (optional, defaults to false): Whether to force deletion of a datafeed that has already been started.

This runner will intentionally ignore 404s from Elasticsearch so it is safe to execute this runner regardless whether a
corresponding machine learning datafeed exists.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

create-ml-datafeed

With the operation create-ml-datafeed you can execute the create datafeeds API. The
create-ml-datafeed operation supports the following parameters:

• datafeed-id (mandatory): The name of the machine learning datafeed to create.

• body (mandatory): Request body containing the definition of the datafeed. Please see the create datafeed API
documentation for more details.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

start-ml-datafeed

With the operation start-ml-datafeed you can execute the start datafeeds API. The start-ml-datafeed
operation supports the following parameters which are documented in the start datafeed API documentation:

90 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-delete-datafeed.html
https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-put-datafeed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-put-datafeed.html
https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-start-datafeed.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-start-datafeed.html

Rally Documentation, Release 1.4.0

• datafeed-id (mandatory): The name of the machine learning datafeed to start.

• body (optional, defaults to empty): Request body with start parameters.

• start (optional, defaults to empty): Start timestamp of the datafeed.

• end (optional, defaults to empty): End timestamp of the datafeed.

• timeout (optional, defaults to empty): Amount of time to wait until a datafeed starts.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

stop-ml-datafeed

With the operation stop-ml-datafeed you can execute the stop datafeed API. The stop-ml-datafeed oper-
ation supports the following parameters:

• datafeed-id (mandatory): The name of the machine learning datafeed to start.

• force (optional, defaults to false): Whether to forcefully stop an already started datafeed.

• timeout (optional, defaults to empty): Amount of time to wait until a datafeed stops.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

delete-ml-job

With the operation delete-ml-job you can execute the delete jobs API. The delete-ml-job operation sup-
ports the following parameters:

• job-id (mandatory): The name of the machine learning job to delete.

• force (optional, defaults to false): Whether to force deletion of a job that has already been opened.

This runner will intentionally ignore 404s from Elasticsearch so it is safe to execute this runner regardless whether a
corresponding machine learning job exists.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

create-ml-job

With the operation create-ml-job you can execute the create jobs API. The create-ml-job operation sup-
ports the following parameters:

• job-id (mandatory): The name of the machine learning job to create.

• body (mandatory): Request body containing the definition of the job. Please see the create job API documen-
tation for more details.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

2.14. Track Reference 91

https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-stop-datafeed.html
https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-delete-job.html
https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-put-job.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-put-job.html
https://www.elastic.co/products/stack/machine-learning

Rally Documentation, Release 1.4.0

open-ml-job

With the operation open-ml-job you can execute the open jobs API. The open-ml-job operation supports the
following parameters:

• job-id (mandatory): The name of the machine learning job to open.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

close-ml-job

With the operation close-ml-job you can execute the close jobs API. The ‘‘close-ml-job‘ operation supports the
following parameters:

• job-id (mandatory): The name of the machine learning job to start.

• force (optional, defaults to false): Whether to forcefully stop an already opened job.

• timeout (optional, defaults to empty): Amount of time to wait until a job stops.

This operation works only if machine-learning is properly installed and enabled. This is an administrative operation.
Metrics are not reported by default. Reporting can be forced by setting include-in-reporting to true.

raw-request

With the operation raw-request you can execute arbitrary HTTP requests against Elasticsearch. This is a low-level
operation that should only be used if no high-level operation is available. Note that it is always possible to write a
custom runner. The raw-request operation supports the following parameters:

• method (optional, defaults to GET): The HTTP request method to use

• path (mandatory): Path for the API call (excluding host and port). The path must begin with a /. Example:
/myindex/_flush.

• header (optional): A structure containing any request headers as key-value pairs.

• body (optional): The document body.

• request-params (optional): A structure containing HTTP request parameters.

• ignore (optional): An array of HTTP response status codes to ignore (i.e. consider as successful).

sleep

With the operation sleep you can sleep for a certain duration to ensure no requests are executed by the corresponding
clients. The sleep operation supports the following parameter:

• duration (mandatory): A non-negative number that defines the sleep duration in seconds.

Note: The sleep operation is only useful in very limited circumstances. To throttle throughput, specify a
target-throughput on the corresponding task instead.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

92 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/ml-open-job.html
https://www.elastic.co/products/stack/machine-learning
https://www.elastic.co/products/stack/machine-learning

Rally Documentation, Release 1.4.0

delete-snapshot-repository

With the operation delete-snapshot-repository you can delete an existing snapshot repository. The
delete-snapshot-repository operation supports the following parameter:

• repository (mandatory): The name of the snapshot repository to delete.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

create-snapshot-repository

With the operation create-snapshot-repository you can create a new snapshot repository. The
create-snapshot-repository operation supports the following parameters:

• repository (mandatory): The name of the snapshot repository to create.

• body (mandatory): The body of the create snapshot repository request.

• request-params (optional): A structure containing HTTP request parameters.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

restore-snapshot

With the operation restore-snapshot you can restore a snapshot from an already created snapshot repository.
The restore-snapshot operation supports the following parameters:

• repository (mandatory): The name of the snapshot repository to use. This snapshot repository must exist
prior to calling restore-snapshot.

• snapshot (mandatory): The name of the snapshot to restore.

• body (optional): The body of the snapshot restore request.

• wait-for-completion (optional, defaults to False): Whether this call should return immediately or
block until the snapshot is restored.

• request-params (optional): A structure containing HTTP request parameters.

Note: In order to ensure that the track execution only continues after a snapshot has been restored, set
wait-for-completion to true and increase the request timeout. In the example below we set it to 7200
seconds (or 2 hours):

"request-params": {
"request_timeout": 7200

}

However, this might not work if a proxy is in between the client and Elasticsearch and the proxy has a shorter request
timeout configured than the client. In this case, keep the default value for wait-for-completion and instead add
a wait-for-recovery runner in the next step. This has the additional advantage that you’ll get a progress report
while the snapshot is being restored.

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

2.14. Track Reference 93

https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html#restore-snapshot

Rally Documentation, Release 1.4.0

wait-for-recovery

With the operation wait-for-recovery you can wait until an ongoing shard recovery finishes. The
wait-for-recovery operation supports the following parameters:

• completion-recheck-attempts (optional, defaults to 3): It might be possible that the index recovery
API reports that there are no active shard recoveries when a new one might be scheduled shortly afterwards.
Therefore, this operation will check several times whether there are still no active recoveries. In between those
attempts, it will wait for a time period specified by completion-recheck-wait-period.

• completion-recheck-wait-period (optional, defaults to 2 seconds): Time in seconds to wait in be-
tween consecutive attempts.

Warning: By default this operation will run unthrottled (like any other) but you should limit the number of calls
by specifying one of the target-throughput or target-interval properties on the corresponding task:

{
"operation": {
"operation-type": "wait-for-recovery",
"completion-recheck-attempts": 2,
"completion-recheck-wait-period": 5

},
"target-interval": 10

}

In this example, Rally will check the progress of shard recovery every ten seconds (as specified by
target-throughput). When the index recovery API reports that there are no active recoveries, it will
still check this twice (completion-recheck-attempts), waiting for five seconds in between those calls
(completion-recheck-wait-period).

This is an administrative operation. Metrics are not reported by default. Reporting can be forced by setting
include-in-reporting to true.

schedule

The schedule element contains a list of tasks that are executed by Rally, i.e. it describes the workload. Each task
consists of the following properties:

• name (optional): This property defines an explicit name for the given task. By default the operation’s name is
implicitly used as the task name but if the same operation is run multiple times, a unique task name must be
specified using this property.

• operation (mandatory): This property refers either to the name of an operation that has been defined in the
operations section or directly defines an operation inline.

• clients (optional, defaults to 1): The number of clients that should execute a task concurrently.

• warmup-iterations (optional, defaults to 0): Number of iterations that each client should execute to
warmup the benchmark candidate. Warmup iterations will not show up in the measurement results.

• iterations (optional, defaults to 1): Number of measurement iterations that each client executes. The
command line report will automatically adjust the percentile numbers based on this number (i.e. if you just run
5 iterations you will not get a 99.9th percentile because we need at least 1000 iterations to determine this value
precisely).

94 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-recovery.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-recovery.html

Rally Documentation, Release 1.4.0

• warmup-time-period (optional, defaults to 0): A time period in seconds that Rally considers for warmup
of the benchmark candidate. All response data captured during warmup will not show up in the measurement
results.

• time-period (optional): A time period in seconds that Rally considers for measurement. Note that for bulk
indexing you should usually not define this time period. Rally will just bulk index all documents and consider
every sample after the warmup time period as measurement sample.

• schedule (optional, defaults to deterministic): Defines the schedule for this task, i.e. it defines at
which point in time during the benchmark an operation should be executed. For example, if you specify a
deterministic schedule and a target-interval of 5 (seconds), Rally will attempt to execute the corresponding
operation at second 0, 5, 10, 15 Out of the box, Rally supports deterministic and poisson but you
can define your own custom schedules.

• target-throughput (optional): Defines the benchmark mode. If it is not defined, Rally assumes this is a
throughput benchmark and will run the task as fast as it can. This is mostly needed for batch-style operations
where it is more important to achieve the best throughput instead of an acceptable latency. If it is defined, it
specifies the number of requests per second over all clients. E.g. if you specify target-throughput:
1000 with 8 clients, it means that each client will issue 125 (= 1000 / 8) requests per second. In total, all clients
will issue 1000 requests each second. If Rally reports less than the specified throughput then Elasticsearch
simply cannot reach it.

• target-interval (optional): This is just 1 / target-throughput (in seconds) and may be
more convenient for cases where the throughput is less than one operation per second. Define either
target-throughput or target-interval but not both (otherwise Rally will raise an error).

Defining operations

In the following snippet we define two operations force-merge and a match-all query separately in an opera-
tions block:

{
"operations": [
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "match-all-query",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

}
],
"schedule": [
{

"operation": "force-merge",
"clients": 1

},
{

"operation": "match-all-query",
"clients": 4,
"warmup-iterations": 1000,
"iterations": 1000,

(continues on next page)

2.14. Track Reference 95

Rally Documentation, Release 1.4.0

(continued from previous page)

"target-throughput": 100
}

]
}

If we do not want to reuse these operations, we can also define them inline. Note that the operations section is
gone:

{
"schedule": [
{

"operation": {
"name": "force-merge",
"operation-type": "force-merge"

},
"clients": 1

},
{

"operation": {
"name": "match-all-query",
"operation-type": "search",
"body": {
"query": {

"match_all": {}
}

}
},
"clients": 4,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

Contrary to the query, the force-merge operation does not take any parameters, so Rally allows us to just specify
the operation-type for this operation. It’s name will be the same as the operation’s type:

{
"schedule": [
{

"operation": "force-merge",
"clients": 1

},
{

"operation": {
"name": "match-all-query",
"operation-type": "search",
"body": {
"query": {

"match_all": {}
}

}
},
"clients": 4,
"warmup-iterations": 1000,

(continues on next page)

96 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

"iterations": 1000,
"target-throughput": 100

}
]

}

Choosing a schedule

Rally allows you to choose between the following schedules to simulate traffic:

• deterministically distributed

• Poisson distributed

The diagram below shows how different schedules in Rally behave during the first ten seconds of a benchmark. Each
schedule is configured for a (mean) target throughput of one operation per second.

If you want as much reproducibility as possible you can choose the deterministic schedule. A Poisson distribution
models random independent arrivals of clients which on average match the expected arrival rate which makes it suitable
for modelling the behaviour of multiple clients that decide independently when to issue a request. For this reason,
Poisson processes play an important role in queueing theory.

If you have more complex needs on how to model traffic, you can also implement a custom schedule.

2.14. Track Reference 97

https://en.wikipedia.org/wiki/Degenerate_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Queueing_theory

Rally Documentation, Release 1.4.0

Time-based vs. iteration-based

You should usually use time periods for batch style operations and iterations for the rest. However, you can also choose
to run a query for a certain time period.

All tasks in the schedule list are executed sequentially in the order in which they have been defined. However, it
is also possible to execute multiple tasks concurrently, by wrapping them in a parallel element. The parallel
element defines of the following properties:

• clients (optional): The number of clients that should execute the provided tasks. If you specify this property,
Rally will only use as many clients as you have defined on the parallel element (see examples)!

• warmup-time-period (optional, defaults to 0): Allows to define a default value for all tasks of the
parallel element.

• time-period (optional, no default value if not specified): Allows to define a default value for all tasks of the
parallel element.

• warmup-iterations (optional, defaults to 0): Allows to define a default value for all tasks of the
parallel element.

• iterations (optional, defaults to 1): Allows to define a default value for all tasks of the parallel element.

• completed-by (optional): Allows to define the name of one task in the tasks list. As soon as this task
has completed, the whole parallel task structure is considered completed. If this property is not explicitly
defined, the parallel task structure is considered completed as soon as all its subtasks have completed. A
task is completed if and only if all associated clients have completed execution.

• tasks (mandatory): Defines a list of tasks that should be executed concurrently. Each task in the list can define
the following properties that have been defined above: clients, warmup-time-period, time-period,
warmup-iterations and iterations.

Note: parallel elements cannot be nested.

Warning: Specify the number of clients on each task separately. If you specify this number on the parallel
element instead, Rally will only use that many clients in total and you will only want to use this behavior in very
rare cases (see examples)!

challenge

If your track defines only one benchmarking scenario specify the schedule on top-level. Use the challenge
element if you want to specify additional properties like a name or a description. You can think of a challenge as a
benchmarking scenario. If you have multiple challenges, you can define an array of challenges.

This section contains one or more challenges which describe the benchmark scenarios for this data set. A challenge
can reference all operations that are defined in the operations section.

Each challenge consists of the following properties:

• name (mandatory): A descriptive name of the challenge. Should not contain spaces in order to simplify handling
on the command line for users.

• description (optional): A human readable description of the challenge.

• default (optional): If true, Rally selects this challenge by default if the user did not specify a challenge on
the command line. If your track only defines one challenge, it is implicitly selected as default, otherwise you
need to define "default": true on exactly one challenge.

98 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

• schedule (mandatory): Defines the workload. It is described in more detail above.

Note: You should strive to minimize the number of challenges. If you just want to run a subset of the tasks in a
challenge, use task filtering.

2.14.5 Examples

A track with a single task

To get started with custom tracks, you can benchmark a single task, e.g. a match_all query:

{
"schedule": [
{

"operation": {
"operation-type": "search",
"index": "_all",
"body": {
"query": {

"match_all": {}
}

}
},
"warmup-iterations": 100,
"iterations": 100,
"target-throughput": 10

}
]

}

This track assumes that you have an existing cluster with pre-populated data. It will run the provided match_all
query at 10 operations per second with one client and use 100 iterations as warmup and the next 100 iterations to
measure.

For the examples below, note that we do not show the operation definition but you should be able to infer from the
operation name what it is doing.

Running unthrottled

In this example Rally will run a bulk index operation unthrottled for one hour:

"schedule": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8

}
]

Running tasks in parallel

2.14. Track Reference 99

Rally Documentation, Release 1.4.0

Note: You cannot nest parallel tasks.

If we want to run tasks in parallel, we can use the parallel element. In the simplest case, you let Rally decide the
number of clients needed to run the parallel tasks (note how we can define default values on the parallel element):

{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [
{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200

}
]

}
}

]
}

Rally will determine that three clients are needed to run each task in a dedicated client. You can also see that each task
can have different settings.

However, you can also explicitly define the number of clients:

"schedule": [
{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{
"operation": "match-all",
"clients": 4,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,
"target-throughput": 200

}
]

}

(continues on next page)

100 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

}
]

This schedule will run a match all query, a term query and a phrase query concurrently. It will run with eight clients
in total (four for the match all query and two each for the term and phrase query).

In this scenario, we run indexing and a few queries in parallel with a total of 14 clients:

"schedule": [
{
"parallel": {

"tasks": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,
"target-throughput": 50

},
{
"operation": "default",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 200

}
]

}
}

]

We can use completed-by to stop querying as soon as bulk-indexing has completed:

"schedule": [
{
"parallel": {

"completed-by": "bulk",
"tasks": [

{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,

(continues on next page)

2.14. Track Reference 101

Rally Documentation, Release 1.4.0

(continued from previous page)

"target-throughput": 50
},
{
"operation": "default",
"clients": 2,
"warmup-time-period": 480,
"time-period": 7200,
"target-throughput": 50

}
]

}
}

]

We can also mix sequential tasks with the parallel element. In this scenario we are indexing with 8 clients and
continue querying with 6 clients after indexing has finished:

"schedule": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,
"target-throughput": 50

},
{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{
"operation": "default",
"clients": 2,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,
"target-throughput": 200

}
]

}
}

]

Be aware of the following case where we explicitly define that we want to run only with two clients in total:

"schedule": [
{
"parallel": {

"warmup-iterations": 50,

(continues on next page)

102 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

"iterations": 100,
"clients": 2,
"tasks": [

{
"operation": "match-all",
"target-throughput": 50

},
{
"operation": "term",
"target-throughput": 200

},
{
"operation": "phrase",
"target-throughput": 200

}
]

}
}

]

Rally will not run all three tasks in parallel because you specified that you want only two clients in total. Hence,
Rally will first run “match-all” and “term” concurrently (with one client each). After they have finished, Rally will run
“phrase” with one client. You could also specify more clients than there are tasks but these will then just idle.

You can also specify a number of clients on sub tasks explicitly (by default, one client is assumed per subtask). This
allows to define a weight for each client operation. Note that you need to define the number of clients also on the
parallel parent element, otherwise Rally would determine the number of total needed clients again on its own:

{
"parallel": {
"clients": 3,
"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200,
"clients": 2

}
]

}
}

This will ensure that the phrase query will be executed by two clients. All other ones are executed by one client.

2.15 Configure Elasticsearch: Cars

2.15. Configure Elasticsearch: Cars 103

Rally Documentation, Release 1.4.0

Note: You can skip this section if you use Rally only as a load generator.

2.15.1 Definition

A Rally “car” is a specific configuration of Elasticsearch. You can list the available cars with esrally list cars:

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Name Type Description
----------------------- ------ ----------------------------------
16gheap car Sets the Java heap to 16GB
1gheap car Sets the Java heap to 1GB
2gheap car Sets the Java heap to 2GB
4gheap car Sets the Java heap to 4GB
8gheap car Sets the Java heap to 8GB
defaults car Sets the Java heap to 1GB
ea mixin Enables Java assertions
fp mixin Preserves frame pointers
x-pack-ml mixin X-Pack Machine Learning
x-pack-monitoring-http mixin X-Pack Monitoring (HTTP exporter)
x-pack-monitoring-local mixin X-Pack Monitoring (local exporter)
x-pack-security mixin X-Pack Security

You can specify the car that Rally should use with e.g. --car="4gheap". It is also possible to specify one or more
“mixins” to further customize the configuration. For example, you can specify --car="4gheap,ea" to run with a
4GB heap and enable Java assertions (they are disabled by default) or --car="4gheap,x-pack-security" to
benchmark Elasticsearch with X-Pack Security enabled (requires Elasticsearch 6.3.0 or better).

Note: To benchmark x-pack-security you need to add the following command line op-
tions: --client-options="use_ssl:true,verify_certs:false,basic_auth_user:'rally',
basic_auth_password:'rally-password'"

Similar to custom tracks, you can also define your own cars.

2.15.2 The Anatomy of a car

The default car definitions of Rally are stored in ~/.rally/benchmarks/teams/default/cars. There we
find the following structure:

.
v1

1gheap.ini
2gheap.ini
defaults.ini
ea

templates

(continues on next page)

104 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

config
jvm.options

ea.ini
vanilla

config.ini
templates

config
elasticsearch.yml
jvm.options
log4j2.properties

The top-level directory “v1” denotes the configuration format in version 1. Below that directory, each .ini file defines
a car. Each directory (ea or vanilla) contains templates for the config files. Rally will only copy the files in the
templates subdirectory. The top-level directory is reserved for a special file, config.ini which you can use to
define default variables that apply to all cars that are based on this configuration. Below is an example config.ini
file:

[variables]
clean_command=./gradlew clean

This defines the variable clean_command for all cars that reference this configuration. Rally will treat the following
variable names specially:

• clean_command: The command to clean the Elasticsearch project directory.

• build_command: The command to build an Elasticsearch source distribution.

• artifact_path_pattern: A glob pattern to find a previously built source distribution within the project directory.

• release_url: A download URL for Elasticsearch distributions. The placeholder {{VERSION}} is replaced by
Rally with the actual Elasticsearch version.

Let’s have a look at the 1gheap car by inspecting 1gheap.ini:

[meta]
description=Sets the Java heap to 1GB
type=car

[config]
base=vanilla

[variables]
heap_size=1g

The name of the car is derived from the .ini file name. In the meta section we can provide a description
and the type. Use car if a configuration can be used standalone and mixin if it needs to be combined with other
configurations. In the config section we define that this definition is based on the vanilla configuration. We also
define a variable heap_size and set it to 1g. Note that variables defined here take precedence over variables defined
in the config.ini file of any of the referenced configurations.

Let’s open vanilla/config/templates/jvm.options to see how this variable is used (we’ll only show the
relevant part here):

Xms represents the initial size of total heap space
Xmx represents the maximum size of total heap space

-Xms{{heap_size}}
-Xmx{{heap_size}}

2.15. Configure Elasticsearch: Cars 105

Rally Documentation, Release 1.4.0

So Rally reads all variables and the template files and replaces the variables in the final configuration. Note that
Rally does not know anything about jvm.options or elasticsearch.yml. For Rally, these are just plain text
templates that need to be copied to the Elasticsearch directory before running a benchmark. Under the hood, Rally
uses Jinja2 as template language. This allows you to use Jinja2 expressions in your car configuration files.

If you open vanilla/templates/config/elasticsearch.yml you will see a few variables that are not
defined in the .ini file:

• network_host

• http_port

These values are derived by Rally internally based on command line flags and you cannot override them in your car
definition. You also cannot use these names as names for variables because Rally would simply override them.

If you specify multiple configurations, e.g. --car="4gheap,ea", Rally will apply them in order. It will first read
all variables in 4gheap.ini, then in ea.ini. Afterwards, it will copy all configuration files from the corresponding
config base of 4gheap and append all configuration files from ea. This also shows when to define a separate “car”
and when to define a “mixin”: If you need to amend configuration files, use a mixin, if you need to have a specific
configuration, define a car.

Simple customizations

For simple customizations you can create the directory hierarchy as outlined above and use the --team-path com-
mand line parameter to refer to this configuration. For more complex use cases and distributed multi-node benchmarks,
we recommend to use custom team repositories.

Custom Team Repositories

Rally provides a default team repository that is hosted on Github. You can also add your own team repositories
although this requires a bit of additional work. First of all, team repositories need to be managed by git. The reason
is that Rally can benchmark multiple versions of Elasticsearch and we use git branches in the track repository to
determine the best match. The versioning scheme is as follows:

• The master branch needs to work with the latest master branch of Elasticsearch.

• All other branches need to match the version scheme of Elasticsearch, i.e. MAJOR.MINOR.PATCH-SUFFIX
where all parts except MAJOR are optional.

Rally implements a fallback logic so you don’t need to define a branch for each patch release of Elasticsearch. For
example:

• The branch 6.0.0-alpha1 will be chosen for the version 6.0.0-alpha1 of Elasticsearch.

• The branch 5 will be chosen for all versions for Elasticsearch with the major version 5, e.g. 5.0.0, 5.1.3
(provided there is no specific branch).

Rally tries to use the branch with the best match to the benchmarked version of Elasticsearch.

Creating a new team repository

All team repositories are located in ~/.rally/benchmarks/teams. If you want to add a dedicated team repos-
itory, called private follow these steps:

106 Chapter 2. Source Code

http://jinja.pocoo.org/docs/dev/
https://github.com/elastic/rally-teams

Rally Documentation, Release 1.4.0

cd ~/.rally/benchmarks/teams
mkdir private
cd private
git init
add your team now (don't forget to add the subdirectory "cars").
git add .
git commit -m "Initial commit"

If you want to share your teams with others (or you want to run remote benchmarks) you need to add a remote and
push it:

git remote add origin git@git-repos.acme.com:acme/rally-teams.git
git push -u origin master

If you have added a remote you should also add it in ~/.rally/rally.ini, otherwise you can skip this step.
Open the file in your editor of choice and add the following line in the section teams:

private.url = <<URL_TO_YOUR_ORIGIN>>

Rally will then automatically update the local tracking branches before the benchmark starts.

Warning: If you run benchmarks against a remote machine that is under the control of Rally then you need to
add the custom team configuration on every node!

You can now verify that everything works by listing all teams in this team repository:

esrally list cars --team-repository=private

This shows all teams that are available on the master branch of this repository. Suppose you only created tracks
on the branch 2 because you’re interested in the performance of Elasticsearch 2.x, then you can specify also the
distribution version:

esrally list teams --team-repository=private --distribution-version=2.0.0

Rally will follow the same branch fallback logic as described above.

Adding an already existing team repository

If you want to add a team repository that already exists, just open ~/.rally/rally.ini in your editor of choice
and add the following line in the section teams:

your_repo_name.url = <<URL_TO_YOUR_ORIGIN>>

After you have added this line, have Rally list the tracks in this repository:

esrally list cars --team-repository=your_repo_name

2.16 Using Elasticsearch Plugins

You can have Rally setup an Elasticsearch cluster with plugins for you. However, there are a couple of restrictions:

• This feature is only supported from Elasticsearch 5.0.0 onwards

2.16. Using Elasticsearch Plugins 107

Rally Documentation, Release 1.4.0

• Whereas Rally caches downloaded Elasticsearch distributions, plugins will always be installed via the Internet
and thus each machine where an Elasticsearch node will be installed, requires an active Internet connection.

2.16.1 Listing plugins

To see which plugins are available, run esrally list elasticsearch-plugins:

Available Elasticsearch plugins:

Name Configuration
----------------------- ----------------
analysis-icu
analysis-kuromoji
analysis-phonetic
analysis-smartcn
analysis-stempel
analysis-ukrainian
discovery-azure-classic
discovery-ec2
discovery-file
discovery-gce
ingest-attachment
ingest-geoip
ingest-user-agent
lang-javascript
lang-python
mapper-attachments
mapper-murmur3
mapper-size
repository-azure
repository-gcs
repository-hdfs
repository-s3
store-smb

Rally supports plugins only for Elasticsearch 5.0 or better. As the availability of plugins may change from release
to release we recommend that you include the --distribution-version parameter when listing plugins. By
default Rally assumes that you want to benchmark the latest master version of Elasticsearch.

Let’s see what happens if we run esrally list elasticsearch-plugins
--distribution-version=2.4.0:

No Elasticsearch plugins are available.

As mentioned before, this is expected as only Elasticsearch 5.0 or better is supported.

2.16.2 Running a benchmark with plugins

In order to tell Rally to install a plugin, use the --elasticsearch-plugins parameter when starting a race.
You can provide multiple plugins (comma-separated) and they will be installed in the order to that you define on the
command line.

Example:

esrally --distribution-version=5.5.0 --elasticsearch-plugins="analysis-icu,analysis-
→˓phonetic"

108 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

This will install the plugins analysis-icu and analysis-phonetic (in that order). In order to use the features
that these plugins provide, you need to write a custom track.

Rally will use several techniques to install and configure plugins:

• First, Rally checks whether directory plugins/PLUGIN_NAME in the currently configured team repository
exists. If this is the case, then plugin installation and configuration details will be read from this directory.

• Next, Rally will use the provided plugin name when running the Elasticsearch plugin installer. With this ap-
proach we can avoid to create a plugin configuration directory in the team repository for very simple plugins
that do not need any configuration.

As mentioned above, Rally also allows you to specify a plugin configuration and you can even combine them. Here
are some examples (requires Elasticsearch < 6.3.0 because with 6.3.0 x-pack has turned into a module of Elasticsearch
which is treated as a “car” in Rally):

• Run a benchmark with the x-pack plugin in the security configuration:
--elasticsearch-plugins=x-pack:security

• Run a benchmark with the x-pack plugin in the security and the graph configuration:
--elasticsearch-plugins=x-pack:security+graph

Note: To benchmark the security configuration of x-pack you need to add the following command line op-
tions: --client-options="use_ssl:true,verify_certs:false,basic_auth_user:'rally',
basic_auth_password:'rally-password'"

You can also override plugin variables with --plugin-params which is needed for example if you want to use the
monitoring-http configuration in order to export monitoring data. You can export monitoring data e.g. with the
following configuration:

--elasticsearch-plugins="x-pack:monitoring-http" --plugin-params="monitoring_type:
→˓'https',monitoring_host:'some_remote_host',monitoring_port:10200,monitoring_user:
→˓'rally',monitoring_password:'m0n1t0r1ng'"

The monitoring_user and monitoring_password parameters are optional, the other parameters are manda-
tory. For more details on the configuration options check the Monitoring plugin documentation.

If you are behind a proxy, set the environment variable ES_JAVA_OPTS accordingly on each target machine as
described in the Elasticsearch plugin documentation.

2.16.3 Building plugins from sources

Plugin authors may want to benchmark source builds of their plugins. Your plugin is either:

• built alongside Elasticsearch

• built against a released version of Elasticsearch

Plugins built alongside Elasticsearch

To make this work, you need to manually edit Rally’s configuration file in ~/.rally/rally.ini. Suppose, we
want to benchmark the plugin “my-plugin”. Then you need to add the following entries in the source section:

plugin.my-plugin.remote.repo.url = git@github.com:example-org/my-plugin.git
plugin.my-plugin.src.subdir = elasticsearch-extra/my-plugin

(continues on next page)

2.16. Using Elasticsearch Plugins 109

https://www.elastic.co/guide/en/x-pack/current/monitoring-production.html
https://www.elastic.co/guide/en/elasticsearch/plugins/current/_other_command_line_parameters.html#_proxy_settings

Rally Documentation, Release 1.4.0

(continued from previous page)

plugin.my-plugin.build.command = ./gradlew :my-plugin:plugin:assemble
plugin.my-plugin.build.artifact.subdir = plugin/build/distributions

Let’s discuss these properties one by one:

• plugin.my-plugin.remote.repo.url (optional): This is needed to let Rally checkout the source code
of the plugin. If this is a private repo, credentials need to be setup properly. If the source code is already locally
available you may not need to define this property. The remote’s name is assumed to be “origin” and this is not
configurable. Also, only git is supported as revision control system.

• plugin.my-plugin.src.subdir (mandatory): This is the directory to which the plugin will be checked
out relative to src.root.dir. In order to allow to build the plugin alongside Elasticsearch, the plugin needs
to reside in a subdirectory of elasticsearch-extra (see also the Elasticsearch testing documentation.

• plugin.my-plugin.build.command (mandatory): The full build command to run in order to build the
plugin artifact. Note that this command is run from the Elasticsearch source directory as Rally assumes that you
want to build your plugin alongside Elasticsearch (otherwise, see the next section).

• plugin.my-plugin.build.artifact.subdir (mandatory): This is the subdirectory relative to
plugin.my-plugin.src.subdir in which the final plugin artifact is located.

Warning: plugin.my-plugin.build.command has replaced plugin.my-plugin.build.task in
earlier Rally versions. It now requires the full build command.

In order to run a benchmark with my-plugin, you’d invoke Rally as fol-
lows: esrally --revision="elasticsearch:some-elasticsearch-revision,
my-plugin:some-plugin-revision" --elasticsearch-plugins="my-plugin" where you
need to replace some-elasticsearch-revision and some-plugin-revision with the appropriate git
revisions. Adjust other command line parameters (like track or car) accordingly. In order for this to work, you need to
ensure that:

• All prerequisites for source builds are installed.

• The Elasticsearch source revision is compatible with the chosen plugin revision. Note that you do not need to
know the revision hash to build against an already released version and can use git tags instead. E.g. if you
want to benchmark against Elasticsearch 5.6.1, you can specify --revision="elasticsearch:v5.6.
1,my-plugin:some-plugin-revision" (see e.g. the Elasticsearch tags on Github or use git tag in
the Elasticsearch source directory on the console).

• If your plugin needs to be configured, create a proper plugin specification (see below).

Note: Rally can build all Elasticsearch core plugins out of the box without any further configuration.

Plugins based on a released Elasticsearch version

To make this work, you need to manually edit Rally’s configuration file in ~/.rally/rally.ini. Suppose, we
want to benchmark the plugin “my-plugin”. Then you need to add the following entries in the source section:

plugin.my-plugin.remote.repo.url = git@github.com:example-org/my-plugin.git
plugin.my-plugin.src.dir = /path/to/your/plugin/sources
plugin.my-plugin.build.command = /usr/local/bin/gradle :my-plugin:plugin:assemble
plugin.my-plugin.build.artifact.subdir = build/distributions

110 Chapter 2. Source Code

https://github.com/elastic/elasticsearch/blob/master/TESTING.asciidoc#building-with-extra-plugins
https://github.com/elastic/elasticsearch/tags
https://github.com/elastic/elasticsearch/tree/master/plugins

Rally Documentation, Release 1.4.0

Let’s discuss these properties one by one:

• plugin.my-plugin.remote.repo.url (optional): This is needed to let Rally checkout the source code
of the plugin. If this is a private repo, credentials need to be setup properly. If the source code is already locally
available you may not need to define this property. The remote’s name is assumed to be “origin” and this is not
configurable. Also, only git is supported as revision control system.

• plugin.my-plugin.src.dir (mandatory): This is the absolute directory to which the source code will
be checked out.

• plugin.my-plugin.build.command (mandatory): The full build command to run in order to build the
plugin artifact. This command is run from the plugin project’s root directory.

• plugin.my-plugin.build.artifact.subdir (mandatory): This is the subdirectory relative to
plugin.my-plugin.src.dir in which the final plugin artifact is located.

Warning: plugin.my-plugin.build.command has replaced plugin.my-plugin.build.task in
earlier Rally versions. It now requires the full build command.

In order to run a benchmark with my-plugin, you’d invoke Rally as fol-
lows: esrally --distribution-version="elasticsearch-version"
--revision="my-plugin:some-plugin-revision" --elasticsearch-plugins="my-plugin"
where you need to replace elasticsearch-version with the correct release (e.g. 6.0.0) and
some-plugin-revision with the appropriate git revisions. Adjust other command line parameters (like
track or car) accordingly. In order for this to work, you need to ensure that:

• All prerequisites for source builds are installed.

• The Elasticsearch release is compatible with the chosen plugin revision.

• If your plugin needs to be configured, create a proper plugin specification (see below).

2.16.4 Anatomy of a plugin specification

Simple plugins

You can use Rally to benchmark community-contributed or even your own plugins. In the simplest case, the plugin
does not need any custom configuration. Then you just need to add the download URL to your Rally configuration
file. Consider we want to benchmark the plugin “my-plugin”:

[distributions]
plugin.my-plugin.release.url=https://example.org/my-plugin/releases/{{VERSION}}/my-
→˓plugin-{{VERSION}}.zip

Then you can use --elasticsearch-plugins=my-plugin to run a benchmark with your plugin. Rally will
also replace {{VERSION}} with the distribution version that you have specified on the command line.

Plugins which require configuration

If the plugin needs a custom configuration we recommend to fork the official Rally teams repository and add your
plugin configuration there. Suppose, you want to benchmark “my-plugin” which has the following settings that can be
configured in elasticsearch.yml:

• myplugin.active: a boolean which activates the plugin

• myplugin.mode: Either simple or advanced

2.16. Using Elasticsearch Plugins 111

https://github.com/elastic/rally-teams

Rally Documentation, Release 1.4.0

We want to support two configurations for this plugin: simple which will set myplugin.mode to simple and
advanced which will set myplugin.mode to advanced.

First, we need a template configuration. We will call this a “config base” in Rally. We will just need one config base
for this example and will call it “default”.

In $TEAM_REPO_ROOT create the directory structure for the plugin and its config base with mkdir -p myplu-
gin/default/templates/config and add the following elasticsearch.yml in the new directory:

myplugin.active: true
myplugin.mode={{my_plugin_mode}}

That’s it. Later, Rally will just copy all files in myplugin/default/templates to the home directory of the
Elasticsearch node that it configures. First, Rally will always apply the car’s configuration and then plugins can add
their configuration on top. This also explains why we have created a config/elasticsearch.yml. Rally will
just copy this file and replace template variables on the way.

Note: If you create a new customization for a plugin, ensure that the plugin name in the team repository matches
the core plugin name. Note that hyphens need to be replaced by underscores (e.g. “x-pack” becomes “x_pack”). The
reason is that Rally allows to write custom install hooks and the plugin name will become the root package name of
the install hook. However, hyphens are not supported in Python which is why we use underscores instead.

The next step is now to create our two plugin configurations where we will set the variables for our config base
“default”. Create a file simple.ini in the myplugin directory:

[config]
reference our one and only config base here
base=default

[variables]
my_plugin_mode=simple

Similarly, create advanced.ini in the myplugin directory:

[config]
reference our one and only config base here
base=default

[variables]
my_plugin_mode=advanced

Rally will now know about myplugin and its two configurations. Let’s check that with esrally list
elasticsearch-plugins:

Available Elasticsearch plugins:

Name Configuration
----------------------- ----------------
analysis-icu
analysis-kuromoji
analysis-phonetic
analysis-smartcn
analysis-stempel
analysis-ukrainian
discovery-azure-classic
discovery-ec2

(continues on next page)

112 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

discovery-file
discovery-gce
ingest-attachment
ingest-geoip
ingest-user-agent
lang-javascript
lang-python
mapper-attachments
mapper-murmur3
mapper-size
myplugin simple
myplugin advanced
repository-azure
repository-gcs
repository-hdfs
repository-s3
store-smb

As myplugin is not a core plugin, the Elasticsearch plugin manager does not know from where to install it, so we
need to add the download URL to ~/.rally/rally.ini as before:

[distributions]
plugin.myplugin.release.url=https://example.org/myplugin/releases/{{VERSION}}/
→˓myplugin-{{VERSION}}.zip

Now you can run benchmarks with the custom Elasticsearch plugin, e.g. with esrally
--distribution-version=5.5.0 --elasticsearch-plugins="myplugin:simple".

For this to work you need ensure two things:

1. The plugin needs to be available for the version that you want to benchmark (5.5.0 in the example above).

2. Rally will choose the most appropriate branch in the team repository before starting the benchmark. In practice,
this will most likely be branch “5” for this example. Therefore you need to ensure that your plugin configuration
is also available on that branch. See the README in the team repository to learn how the versioning scheme
works.

2.17 Telemetry Devices

You probably want to gain additional insights from a race. Therefore, we have added telemetry devices to Rally. If
you invoke esrally list telemetry, it will show which telemetry devices are available:

dm@io:Projects/rally ‹master*›$ esrally list telemetry

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Available telemetry devices:

Command Name Description

(continues on next page)

2.17. Telemetry Devices 113

https://github.com/elastic/rally-teams#versioning-scheme

Rally Documentation, Release 1.4.0

(continued from previous page)

-------------- --------------------- ---
→˓---------------------
jit JIT Compiler Profiler Enables JIT compiler logs.
gc GC log Enables GC logs.
jfr Flight Recorder Enables Java Flight Recorder (requires an
→˓Oracle JDK or OpenJDK 11+)
heapdump Heap Dump Captures a heap dump.
node-stats Node Stats Regularly samples node stats
recovery-stats Recovery Stats Regularly samples shard recovery stats
ccr-stats CCR Stats Regularly samples Cross Cluster Replication
→˓(CCR) related stats

Keep in mind that each telemetry device may incur a runtime overhead which can skew
→˓results.

You can attach one or more of these telemetry devices to the benchmarked cluster. Except for node-stats, this
only works if Rally provisions the cluster (i.e. it does not work with --pipeline=benchmark-only).

2.17.1 jfr

The jfr telemetry device enables the Java Flight Recorder on the benchmark candidate. Up to JDK 11, Java flight
recorder ships only with Oracle JDK, so Rally assumes that Oracle JDK is used for benchmarking. If you run bench-
marks on JDK 11 or later, Java flight recorder is also available on OpenJDK.

To enable jfr, invoke Rally with esrally --telemetry jfr. jfr will then write a flight recording file which
can be opened in Java Mission Control. Rally prints the location of the flight recording file on the command line.

Supported telemetry parameters:

• recording-template: The name of a custom flight recording template. It is up to you to correctly install
these recording templates on each target machine. If none is specified, the default recording template of Java
flight recorder is used.

114 Chapter 2. Source Code

http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/index.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html

Rally Documentation, Release 1.4.0

Note: Up to JDK 11 Java flight recorder ship only with Oracle JDK and the licensing terms do not allow you to run it
in production environments without a valid license (for details, refer to the Oracle Java SE Advanced & Suite Products
page). However, running in a QA environment is fine.

2.17.2 jit

The jit telemetry device enables JIT compiler logs for the benchmark candidate. If the HotSpot disassembler library
is available, the logs will also contain the disassembled JIT compiler output which can be used for low-level analysis.
We recommend to use JITWatch for analysis.

hsdis can be built for JDK 8 on Linux with (based on a description by Alex Blewitt):

curl -O -O -O -O https://raw.githubusercontent.com/dmlloyd/openjdk/jdk8u/jdk8u/
→˓hotspot/src/share/tools/hsdis/{hsdis.c,hsdis.h,Makefile,README}
mkdir -p build/binutils
curl http://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.gz | tar --strip-components=1 -
→˓C build/binutils -z -x -f -
make BINUTILS=build/binutils ARCH=amd64

After it has been built, the binary needs to be copied to the JDK directory (see README of hsdis for details).

2.17.3 gc

The gc telemetry device enables GC logs for the benchmark candidate. You can use tools like GCViewer to analyze
the GC logs.

2.17.4 heapdump

The heapdump telemetry device will capture a heap dump after a benchmark has finished and right before the node
is shutdown.

2.17.5 node-stats

Warning: Using this telemetry device will skew your results because the node-stats API triggers additional
refreshes. Additionally a lot of metrics get recorded impacting the measurement results even further.

The node-stats telemetry device regularly calls the cluster node-stats API and records metrics from the following
sections:

• Indices stats (key indices in the node-stats API)

• Thread pool stats (key jvm.thread_pool in the node-stats API)

• JVM buffer pool stats (key jvm.buffer_pools in the node-stats API)

• JVM gc stats (key jvm.gc in the node-stats API)

• JVM mem stats (key jvm.mem in the node-stats API)

• Circuit breaker stats (key breakers in the node-stats API)

2.17. Telemetry Devices 115

http://www.oracle.com/technetwork/java/javaseproducts/overview/index.html
http://www.oracle.com/technetwork/java/javaseproducts/overview/index.html
https://github.com/AdoptOpenJDK/jitwatch
http://alblue.bandlem.com/2016/09/javaone-hotspot.html
https://github.com/chewiebug/GCViewer
https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html

Rally Documentation, Release 1.4.0

• Network-related stats (key transport in the node-stats API)

• Process cpu stats (key process.cpu in the node-stats API)

Supported telemetry parameters:

• node-stats-sample-interval (default: 1): A positive number greater than zero denoting the sampling
interval in seconds.

• node-stats-include-indices (default: false): A boolean indicating whether indices stats should be
included.

• node-stats-include-indices-metrics (default: docs,store,indexing,search,
merges,query_cache,fielddata,segments,translog,request_cache): A comma-
separated string specifying the Indices stats metrics to include. This is useful, for example, to restrict the
collected Indices stats metrics. Specifying this parameter implicitly enables collection of Indices stats, so you
don’t also need to specify node-stats-include-indices: true.

Example: --telemetry-params="node-stats-include-indices-metrics:'docs'" will
only collect the docs metrics from Indices stats. If you want to use multiple fields, pass a JSON file to
telemetry-params (see the command line reference for details).

• node-stats-include-thread-pools (default: true): A boolean indicating whether thread pool stats
should be included.

• node-stats-include-buffer-pools (default: true): A boolean indicating whether buffer pool stats
should be included.

• node-stats-include-breakers (default: true): A boolean indicating whether circuit breaker stats
should be included.

• node-stats-include-gc (default: true): A boolean indicating whether JVM gc stats should be in-
cluded.

• node-stats-include-mem (default: true): A boolean indicating whether JVM heap stats should be
included.

• node-stats-include-network (default: true): A boolean indicating whether network-related stats
should be included.

• node-stats-include-process (default: true): A boolean indicating whether process cpu stats should
be included.

2.17.6 recovery-stats

The recovery-stats telemetry device regularly calls the indices recovery API and records one metrics document per
shard.

Supported telemetry parameters:

• recovery-stats-indices (default: all indices): An index pattern for which recovery stats should be
checked.

• recovery-stats-sample-interval (default 1): A positive number greater than zero denoting the sam-
pling interval in seconds.

2.17.7 ccr-stats

The ccr-stats telemetry device regularly calls the cross-cluster replication stats API and records one metrics document
per shard.

116 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-recovery.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/ccr-get-stats.html

Rally Documentation, Release 1.4.0

Supported telemetry parameters:

• ccr-stats-indices (default: all indices): An index pattern for which ccr stats should be checked.

• ccr-stats-sample-interval (default 1): A positive number greater than zero denoting the sampling
interval in seconds.

2.18 Rally Daemon

At its heart, Rally is a distributed system, just like Elasticsearch. However, in its simplest form you will not notice,
because all components of Rally can run on a single node too. If you want Rally to configure and start Elasticsearch
nodes remotely or distribute the load test driver to apply load from multiple machines, you need to use Rally daemon.

Rally daemon needs to run on every machine that should be under Rally’s control. We can consider three different
roles:

• Benchmark coordinator: This is the machine where you invoke esrally. It is responsible for user interaction,
coordinates the whole benchmark and shows the results. Only one node can be the benchmark coordinator.

• Load driver: Nodes of this type will interpret and run tracks.

• Provisioner: Nodes of this type will configure an Elasticsearch cluster according to the provided car and Elas-
ticsearch plugin configurations.

The two latter roles are not statically preassigned but rather determined by Rally based on the command line parameter
--load-driver-hosts (for the load driver) and --target-hosts (for the provisioner).

2.18.1 Preparation

First, install and configure Rally on all machines that are involved in the benchmark. If you want to automate this, there
is no need to use the interactive configuration routine of Rally. You can copy ~/.rally/rally.ini to the target machines
adapting the paths in the file as necessary. We also recommend that you copy ~/.rally/benchmarks/data to
all load driver machines before-hand. Otherwise, each load driver machine will need to download a complete copy of
the benchmark data.

Note: Rally Daemon will listen on port 1900 and the actor system that Rally uses internally require access to arbitrary
(unprivileged) ports. Be sure to open up these ports between the Rally nodes.

2.18.2 Starting

For all this to work, Rally needs to form a cluster. This is achieved with the binary esrallyd (note the “d” - for
daemon - at the end). You need to start the Rally daemon on all nodes: First on the coordinator node, then on all
others. The order does matter, because nodes attempt to connect to the coordinator on startup.

On the benchmark coordinator, issue:

esrallyd start --node-ip=IP_OF_COORDINATOR_NODE --coordinator-ip=IP_OF_COORDINATOR_
→˓NODE

On all other nodes, issue:

esrallyd start --node-ip=IP_OF_THIS_NODE --coordinator-ip=IP_OF_COORDINATOR_NODE

2.18. Rally Daemon 117

Rally Documentation, Release 1.4.0

After that, all Rally nodes, know about each other and you can use Rally as usual. See the tips and tricks for more
examples.

2.18.3 Stopping

You can leave the Rally daemon processes running in case you want to run multiple benchmarks. When you are done,
you can stop the Rally daemon on each node with:

esrallyd stop

Contrary to startup, order does not matter here.

2.18.4 Status

You can query the status of the local Rally daemon with:

esrallyd status

2.19 Pipelines

A pipeline is a series of steps that are performed to get benchmark results. This is not intended to customize the actual
benchmark but rather what happens before and after a benchmark.

An example will clarify the concept: If you want to benchmark a binary distribution of Elasticsearch, Rally has to
download a distribution archive, decompress it, start Elasticsearch and then run the benchmark. However, if you want
to benchmark a source build of Elasticsearch, it first has to build a distribution using the Gradle Wrapper. So, in both
cases, different steps are involved and that’s what pipelines are for.

You can get a list of all pipelines with esrally list pipelines:

Available pipelines:

Name Description
----------------------- ---
→˓--------------------------------
from-distribution Downloads an Elasticsearch distribution, provisions it, runs
→˓a benchmark and reports results.
from-sources-complete Builds and provisions Elasticsearch, runs a benchmark and
→˓reports results.
benchmark-only Assumes an already running Elasticsearch instance, runs a
→˓benchmark and reports results
from-sources-skip-build Provisions Elasticsearch (skips the build), runs a benchmark
→˓and reports results.

2.19.1 benchmark-only

This is intended if you want to provision a cluster by yourself. Do not use this pipeline unless you are absolutely sure
you need to. As Rally has not provisioned the cluster, results are not easily reproducable and it also cannot gather a
lot of metrics (like CPU usage).

To benchmark a cluster, you also have to specify the hosts to connect to. An example invocation:

118 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

esrally --pipeline=benchmark-only --target-hosts=search-node-a.intranet.acme.com:9200,
→˓search-node-b.intranet.acme.com:9200

2.19.2 from-distribution

This pipeline allows to benchmark an official Elasticsearch distribution which will be automatically downloaded by
Rally. The earliest supported version is Elasticsearch 1.7.0. An example invocation:

esrally --pipeline=from-distribution --distribution-version=1.7.5

The version numbers have to match the name in the download URL path.

You can also benchmark Elasticsearch snapshot versions by specifying the snapshot repository:

esrally --pipeline=from-distribution --distribution-version=5.0.0-SNAPSHOT --
→˓distribution-repository=snapshot

However, this feature is mainly intended for continuous integration environments and by default you should just
benchmark official distributions.

Note: This pipeline is just mentioned for completeness but Rally will autoselect it for you. All you need to do is to
define the --distribution-version flag.

2.19.3 from-sources-complete

You should use this pipeline when you want to build and benchmark Elasticsearch from sources. This pipeline will
only work from Elasticsearch 5.0 onwards because Elasticsearch switched from Maven to Gradle and Rally only
supports one build tool in the interest of maintainability.

Remember that you also need git installed. If that’s not the case you’ll get an error and have to run esrally
configure first. An example invocation:

esrally --pipeline=from-sources-complete --revision=latest

You have to specify a revision.

Note: This pipeline is just mentioned for completeness but Rally will automatically select it for you. All you need to
do is to define the --revision flag.

2.19.4 from-sources-skip-build

This pipeline is similar to from-sources-complete except that it assumes you have built the binary once. It
saves time if you want to run a benchmark twice for the exact same version of Elasticsearch. Obviously it doesn’t
make sense to provide a revision: It is always the previously built revision. An example invocation:

esrally --pipeline=from-sources-skip-build

2.19. Pipelines 119

Rally Documentation, Release 1.4.0

2.20 Metrics

2.20.1 Metrics Records

At the end of a race, Rally stores all metrics records in its metrics store, which is a dedicated Elasticsearch cluster.
Rally stores the metrics in the indices rally-metrics-*. It will create a new index for each month.

Here is a typical metrics record:

{
"environment": "nightly",
"race-timestamp": "20160421T042749Z",
"race-id": "6ebc6e53-ee20-4b0c-99b4-09697987e9f4",
"@timestamp": 1461213093093,
"relative-time": 10507328,
"track": "geonames",
"track-params": {

"shard-count": 3
},
"challenge": "append-no-conflicts",
"car": "defaults",
"sample-type": "normal",
"name": "throughput",
"value": 27385,
"unit": "docs/s",
"task": "index-append-no-conflicts",
"operation": "index-append-no-conflicts",
"operation-type": "Index",
"meta": {

"cpu_physical_cores": 36,
"cpu_logical_cores": 72,
"cpu_model": "Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz",
"os_name": "Linux",
"os_version": "3.19.0-21-generic",
"host_name": "beast2",
"node_name": "rally-node0",
"source_revision": "a6c0a81",
"distribution_version": "5.0.0-SNAPSHOT",
"tag_reference": "Github ticket 1234"

}
}

As you can see, we do not only store the metrics name and its value but lots of meta-information. This allows you to
create different visualizations and reports in Kibana.

Below we describe each field in more detail.

environment

The environment describes the origin of a metric record. You define this value in the initial configuration of Rally. The
intention is to clearly separate different benchmarking environments but still allow to store them in the same index.

track, track-params, challenge, car

This is the track, challenge and car for which the metrics record has been produced. If the user has provided track
parameters with the command line parameter, --track-params, each of them is listed here too.

120 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

If you specify a car with mixins, it will be stored as one string separated with “+”, e.g. --car="4gheap,ea" will
be stored as 4gheap+ea in the metrics store in order to simplify querying in Kibana. Check the cars documentation
for more details.

sample-type

Rally can be configured to run for a certain period in warmup mode. In this mode samples will be collected with the
sample-type “warmup” but only “normal” samples are considered for the results that reported.

race-timestamp

A constant timestamp (always in UTC) that is determined when Rally is invoked.

race-id

A UUID that changes on every invocation of Rally. It is intended to group all samples of a benchmarking run.

@timestamp

The timestamp in milliseconds since epoch determined when the sample was taken.

relative-time

The relative time in microseconds since the start of the benchmark. This is useful for comparing time-series graphs over
multiple races, e.g. you might want to compare the indexing throughput over time across multiple races. Obviously,
they should always start at the same (relative) point in time and absolute timestamps are useless for that.

name, value, unit

This is the actual metric name and value with an optional unit (counter metrics don’t have a unit). Depending on the
nature of a metric, it is either sampled periodically by Rally, e.g. the CPU utilization or query latency or just measured
once like the final size of the index.

task, operation, operation-type

task is the name of the task (as specified in the track file) that ran when this metric has been gathered. Most of the
time, this value will be identical to the operation’s name but if the same operation is ran multiple times, the task name
will be unique whereas the operation may occur multiple times. It will only be set for metrics with name latency
and throughput.

operation is the name of the operation (as specified in the track file) that ran when this metric has been gathered.
It will only be set for metrics with name latency and throughput.

operation-type is the more abstract type of an operation. During a race, multiple queries may be issued which
are different operation``s but they all have the same ``operation-type (Search). For some
metrics, only the operation type matters, e.g. it does not make any sense to attribute the CPU usage to an individual
query but instead attribute it just to the operation type.

2.20. Metrics 121

Rally Documentation, Release 1.4.0

meta

Rally captures also some meta information for each metric record:

• CPU info: number of physical and logical cores and also the model name

• OS info: OS name and version

• Host name

• Node name: If Rally provisions the cluster, it will choose a unique name for each node.

• Source revision: We always record the git hash of the version of Elasticsearch that is benchmarked. This is even
done if you benchmark an official binary release.

• Distribution version: We always record the distribution version of Elasticsearch that is benchmarked. This is
even done if you benchmark a source release.

• Custom tag: You can define one custom tag with the command line flag --user-tag. The tag is prefixed by
tag_ in order to avoid accidental clashes with Rally internal tags.

• Operation-specific: The optional substructure operation contains additional information depending on the
type of operation. For bulk requests, this may be the number of documents or for searches the number of hits.

Note that depending on the “level” of a metric record, certain meta information might be missing. It makes no sense to
record host level meta info for a cluster wide metric record, like a query latency (as it cannot be attributed to a single
node).

2.20.2 Metric Keys

Rally stores the following metrics:

• latency: Time period between submission of a request and receiving the complete response. It also includes
wait time, i.e. the time the request spends waiting until it is ready to be serviced by Elasticsearch.

• service_time Time period between start of request processing and receiving the complete response. This
metric can easily be mixed up with latency but does not include waiting time. This is what most load testing
tools refer to as “latency” (although it is incorrect).

• throughput: Number of operations that Elasticsearch can perform within a certain time period, usually per
second. See the track reference for a definition of what is meant by one “operation” for each operation type.

• disk_io_write_bytes: number of bytes that have been written to disk during the benchmark. On Linux
this metric reports only the bytes that have been written by Elasticsearch, on Mac OS X it reports the number of
bytes written by all processes.

• disk_io_read_bytes: number of bytes that have been read from disk during the benchmark. The same
caveats apply on Mac OS X as for disk_io_write_bytes.

• node_startup_time: The time in seconds it took from process start until the node is up.

• node_total_old_gen_gc_time: The total runtime of the old generation garbage collector across the
whole cluster as reported by the node stats API.

• node_total_young_gen_gc_time: The total runtime of the young generation garbage collector across
the whole cluster as reported by the node stats API.

• segments_count: Total number of segments as reported by the indices stats API.

• segments_memory_in_bytes: Number of bytes used for segments as reported by the indices stats API.

• segments_doc_values_memory_in_bytes: Number of bytes used for doc values as reported by the
indices stats API.

122 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

• segments_stored_fields_memory_in_bytes: Number of bytes used for stored fields as reported by
the indices stats API.

• segments_terms_memory_in_bytes: Number of bytes used for terms as reported by the indices stats
API.

• segments_norms_memory_in_bytes: Number of bytes used for norms as reported by the indices stats
API.

• segments_points_memory_in_bytes: Number of bytes used for points as reported by the indices stats
API.

• merges_total_time: Cumulative runtime of merges of primary shards, as reported by the indices stats
API. Note that this is not Wall clock time (i.e. if M merge threads ran for N minutes, we will report M * N
minutes, not N minutes). These metrics records also have a per-shard property that contains the times across
primary shards in an array.

• merges_total_count: Cumulative number of merges of primary shards, as reported by indices stats API
under _all/primaries.

• merges_total_throttled_time: Cumulative time within merges have been throttled as reported by the
indices stats API. Note that this is not Wall clock time. These metrics records also have a per-shard property
that contains the times across primary shards in an array.

• indexing_total_time: Cumulative time used for indexing of primary shards, as reported by the indices
stats API. Note that this is not Wall clock time. These metrics records also have a per-shard property that
contains the times across primary shards in an array.

• indexing_throttle_time: Cumulative time that indexing has been throttled, as reported by the indices
stats API. Note that this is not Wall clock time. These metrics records also have a per-shard property that
contains the times across primary shards in an array.

• refresh_total_time: Cumulative time used for index refresh of primary shards, as reported by the indices
stats API. Note that this is not Wall clock time. These metrics records also have a per-shard property that
contains the times across primary shards in an array.

• refresh_total_count: Cumulative number of refreshes of primary shards, as reported by indices stats
API under _all/primaries.

• flush_total_time: Cumulative time used for index flush of primary shards, as reported by the indices
stats API. Note that this is not Wall clock time. These metrics records also have a per-shard property that
contains the times across primary shards in an array.

• flush_total_count: Cumulative number of flushes of primary shards, as reported by indices stats API
under _all/primaries.

• final_index_size_bytes: Final resulting index size on the file system after all nodes have been shut-
down at the end of the benchmark. It includes all files in the nodes’ data directories (actual index files and
translog).

• store_size_in_bytes: The size in bytes of the index (excluding the translog), as reported by the indices
stats API.

• translog_size_in_bytes: The size in bytes of the translog, as reported by the indices stats API.

• ml_processing_time: A structure containing the minimum, mean, median and maximum bucket process-
ing time in milliseconds per machine learning job. These metrics are only available if a machine learning job
has been created in the respective benchmark.

2.20. Metrics 123

Rally Documentation, Release 1.4.0

2.21 Summary Report

At the end of each race, Rally shows a summary report. Below we’ll explain the meaning of each line including a
reference to its corresponding metrics key which can be helpful if you want to build your own reports in Kibana. Note
that not every summary report will show all lines.

2.21.1 Cumulative indexing time of primary shards

• Definition: Cumulative time used for indexing as reported by the indices stats API. Note that this is not Wall
clock time (i.e. if M indexing threads ran for N minutes, we will report M * N minutes, not N minutes).

• Corresponding metrics key: indexing_total_time

2.21.2 Cumulative indexing time across primary shards

• Definition: Minimum, median and maximum cumulative time used for indexing across primary shards as re-
ported by the indices stats API.

• Corresponding metrics key: indexing_total_time (property: per-shard)

2.21.3 Cumulative indexing throttle time of primary shards

• Definition: Cumulative time that indexing has been throttled as reported by the indices stats API. Note that
this is not Wall clock time (i.e. if M indexing threads ran for N minutes, we will report M * N minutes, not N
minutes).

• Corresponding metrics key: indexing_throttle_time

2.21.4 Cumulative indexing throttle time across primary shards

• Definition: Minimum, median and maximum cumulative time used that indexing has been throttled across
primary shards as reported by the indices stats API.

• Corresponding metrics key: indexing_throttle_time (property: per-shard)

2.21.5 Cumulative merge time of primary shards

• Definition: Cumulative runtime of merges of primary shards, as reported by the indices stats API. Note that this
is not Wall clock time.

• Corresponding metrics key: merges_total_time

2.21.6 Cumulative merge count of primary shards

• Definition: Cumulative number of merges of primary shards, as reported by indices stats API under _all/
primaries.

• Corresponding metrics key: merges_total_count

124 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

2.21.7 Cumulative merge time across primary shards

• Definition: Minimum, median and maximum cumulative time of merges across primary shards, as reported by
the indices stats API.

• Corresponding metrics key: merges_total_time (property: per-shard)

2.21.8 Cumulative refresh time of primary shards

• Definition: Cumulative time used for index refresh of primary shards, as reported by the indices stats API. Note
that this is not Wall clock time.

• Corresponding metrics key: refresh_total_time

2.21.9 Cumulative refresh count of primary shards

• Definition: Cumulative number of refreshes of primary shards, as reported by indices stats API under _all/
primaries.

• Corresponding metrics key: refresh_total_count

2.21.10 Cumulative refresh time across primary shards

• Definition: Minimum, median and maximum cumulative time for index refresh across primary shards, as re-
ported by the indices stats API.

• Corresponding metrics key: refresh_total_time (property: per-shard)

2.21.11 Cumulative flush time of primary shards

• Definition: Cumulative time used for index flush of primary shards, as reported by the indices stats API. Note
that this is not Wall clock time.

• Corresponding metrics key: flush_total_time

2.21.12 Cumulative flush count of primary shards

• Definition: Cumulative number of flushes of primary shards, as reported by indices stats API under _all/
primaries.

• Corresponding metrics key: flush_total_count

2.21.13 Cumulative flush time across primary shards

• Definition: Minimum, median and maximum time for index flush across primary shards as reported by the
indices stats API.

• Corresponding metrics key: flush_total_time (property: per-shard)

2.21. Summary Report 125

Rally Documentation, Release 1.4.0

2.21.14 Cumulative merge throttle time of primary shards

• Definition: Cumulative time within merges that have been throttled, as reported by the indices stats API. Note
that this is not Wall clock time.

• Corresponding metrics key: merges_total_throttled_time

2.21.15 Cumulative merge throttle time across primary shards

• Definition: Minimum, median and maximum cumulative time that merges have been throttled across primary
shards as reported by the indices stats API.

• Corresponding metrics key: merges_total_throttled_time (property: per-shard)

2.21.16 ML processing time

• Definition: Minimum, mean, median and maximum time in milliseconds that a machine learning job has spent
processing a single bucket.

• Corresponding metrics key: ml_processing_time

2.21.17 Total Young Gen GC

• Definition: The total runtime of the young generation garbage collector across the whole cluster as reported by
the node stats API.

• Corresponding metrics key: node_total_young_gen_gc_time

2.21.18 Total Old Gen GC

• Definition: The total runtime of the old generation garbage collector across the whole cluster as reported by the
node stats API.

• Corresponding metrics key: node_total_old_gen_gc_time

2.21.19 Store size

• Definition: The size in bytes of the index (excluding the translog) as reported by the indices stats API.

• Corresponding metrics key: store_size_in_bytes

2.21.20 Translog size

• Definition: The size in bytes of the translog as reported by the indices stats API.

• Corresponding metrics key: translog_size_in_bytes

126 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

2.21.21 Heap used for X

Where X is one of:

• doc values

• terms

• norms

• points

• stored fields

• Definition: Number of bytes used for the corresponding item as reported by the indices stats API.

• Corresponding metrics keys: segments_*_in_bytes

2.21.22 Segment count

• Definition: Total number of segments as reported by the indices stats API.

• Corresponding metrics key: segments_count

2.21.23 Throughput

Rally reports the minimum, median and maximum throughput for each task.

• Definition: Number of operations that Elasticsearch can perform within a certain time period, usually per
second.

• Corresponding metrics key: throughput

2.21.24 Latency

Rally reports several percentile numbers for each task. Which percentiles are shown depends on how many requests
Rally could capture (i.e. Rally will not show a 99.99th percentile if it could only capture five samples because that
would be a vanity metric).

• Definition: Time period between submission of a request and receiving the complete response. It also includes
wait time, i.e. the time the request spends waiting until it is ready to be serviced by Elasticsearch.

• Corresponding metrics key: latency

2.21.25 Service time

Rally reports several percentile numbers for each task. Which percentiles are shown depends on how many requests
Rally could capture (i.e. Rally will not show a 99.99th percentile if it could only capture five samples because that
would be a vanity metric).

• Definition: Time period between start of request processing and receiving the complete response. This metric
can easily be mixed up with latency but does not include waiting time. This is what most load testing tools
refer to as “latency” (although it is incorrect).

• Corresponding metrics key: service_time

2.21. Summary Report 127

Rally Documentation, Release 1.4.0

2.21.26 Error rate

• Definition: The ratio of erroneous responses relative to the total number of responses. Any exception thrown by
the Python Elasticsearch client is considered erroneous (e.g. HTTP response codes 4xx, 5xx or network errors
(network unreachable)). For specific details, check the reference documentation of the Elasticsearch client.
Usually any error rate greater than zero is alerting. You should investigate the root cause by inspecting Rally
and Elasticsearch logs and rerun the benchmark.

• Corresponding metrics key: service_time. Each service_time record has a meta.success flag.
Rally simply counts how often this flag is true and false respectively.

2.22 Migration Guide

2.22.1 Migrating to Rally 1.4.0

cluster-settings is deprecated in favor of the put-settings operation

Before Rally 1.4.0, cluster settings could be specified on the track with the cluster-settings property. This
functionality is deprecated and you should set dynamic cluster settings via the new put-settings runner. Static
settings should instead be set via --car-params.

Build logs are stored in Rally’s log directory

If you benchmark source builds of Elasticsearch, Rally has previously stored the build output log in a race-specific
directory. With this release, Rally will store the most recent build log in /home/user/.rally/logs/build.
log.

Index size and Total Written are not included in the command line report

Elasticsearch nodes are now managed independently of benchmark execution and thus all system metrics (“index size”
and “total written”) may be determined after the command line report has been written. The corresponding metrics
(final_index_size_bytes and disk_io_write_bytes) are still written to the Elasticsearch metrics store
if one is configured.

Node details are omitted from race metadata

Before Rally 1.4.0, the file race.json contained node details (such as the number of cluster nodes or details about
the nodes’ operating system version) if Rally provisioned the cluster. With this release, this information is now omitted.
This change also applies to the indices rally-races* in case you have setup an Elasticsearch metrics store. We
recommend to use user tags in case such information is important, e.g. for visualising results.

trial-id and trial-timestamp are deprecated

With Rally 1.4.0, Rally will use the properties race-id and race-timestamp when writing data to the Elastic-
search metrics store. The properties trial-id and trial-timestamp are still populated but will be removed in
a future release. Any visualizations that rely on these properties should be changed to the new ones.

128 Chapter 2. Source Code

https://elasticsearch-py.readthedocs.io

Rally Documentation, Release 1.4.0

Custom Parameter Sources

With Rally 1.4.0, we have changed the API for custom parameter sources. The size() method is now depre-
cated and is instead replaced with a new property called infinite. If you have previously returned None in
size(), infinite should be set to True, otherwise False. Also, we recommend to implement the property
percent_completed as Rally might not be able to determine progress in some cases. See below for some exam-
ples.

Old:

class CustomFiniteParamSource:
...
def size():

return calculate_size()

def params():
return next_parameters()

class CustomInfiniteParamSource:
...
def size():

return None

...

New:

class CustomFiniteParamSource:
def __init__(self, track, params, **kwargs):

self.infinite = False
to track progress
self.current_invocation = 0

...
Note that we have removed the size() method

def params():
self.current_invocation += 1
return next_parameters()

Implementing this is optional but recommended for proper progress reports
@property
def percent_completed(self):

for demonstration purposes we use calculate_size() here
to determine the expected number of invocations. However, if
it is possible to determine this value upfront, it is best
to cache it in a field and just reuse the value
return self.current_invocation / calculate_size()

class CustomInfiniteParamSource:
def __init__(self, track, params, **kwargs):

self.infinite = True
...

...
Note that we have removed the size() method
...

2.22. Migration Guide 129

Rally Documentation, Release 1.4.0

2.22.2 Migrating to Rally 1.3.0

Races now stored by ID instead of timestamp

With Rally 1.3.0, Races will be stored by their Trial ID instead of their timestamp. This means that on disk, a
given race will be found at benchmarks/races/62d1e928-48b0-4d07-9899-07b45d031566/ instead
of benchmarks/races/2019-07-03-17-52-07

Laps feature removed

The --laps parameter and corresponding multi-run trial functionality has been removed from execution and report-
ing. If you need lap functionality, the following shell script can be used instead:

RALLY_LAPS=3

for lap in $(seq 1 ${RALLY_LAPS})
do

esrally --pipeline=benchmark-only --user-tag lap:$lap
done

2.22.3 Migrating to Rally 1.2.1

CPU usage is not measured anymore

With Rally 1.2.1, CPU usage will neither be measured nor reported. We suggest to use system monitoring tools like
mpstat, sar or Metricbeat to measure CPU usage instead.

2.22.4 Migrating to Rally 1.1.0

request-params in operations are passed as is and not serialized

With Rally 1.1.0 any operations supporting the optional request-params property will pass the structure as is
without attempting to serialize values. Until now, request-params relied on parameters being supported by the
Elasticsearch Python client API calls. This means that for example boolean type parameters should be specified as
strings i.e. "true" or "false" rather than true/false.

Example

Using create-index before 1.1.0:

{
"name": "create-all-indices",
"operation-type": "create-index",
"settings": {
"index.number_of_shards": 1

},
"request-params": {
"wait_for_active_shards": true

}
}

Using create-index starting with 1.1.0:

130 Chapter 2. Source Code

https://www.elastic.co/downloads/beats/metricbeat

Rally Documentation, Release 1.4.0

{
"name": "create-all-indices",
"operation-type": "create-index",
"settings": {
"index.number_of_shards": 1

},
"request-params": {
"wait_for_active_shards": "true"

}
}

2.22.5 Migrating to Rally 1.0.1

Logs are not rotated

With Rally 1.0.1 we have disabled automatic rotation of logs by default because it can lead to race conditions due
to Rally’s multi-process architecture. If you did not change the default out-of-the-box logging configuration, Rally
will automatically fix your configuration. Otherwise, you need to replace all instances of logging.handlers.
TimedRotatingFileHandler with logging.handlers.WatchedFileHandler to disable log rotation.

To rotate logs we recommend to use external tools like logrotate. See the following example as a starting point for
your own logrotate configuration and ensure to replace the path /home/user/.rally/logs/rally.log
with the proper one:

/home/user/.rally/logs/rally.log {
rotate daily
daily
keep the last seven log files
rotate 7
remove logs older than 14 days
maxage 14
compress old logs ...
compress
... after moving them
delaycompress
ignore missing log files
missingok
don't attempt to rotate empty ones
notifempty

}

2.22.6 Migrating to Rally 1.0.0

Handling of JDK versions

Previously the path to the JDK needed to be configured in Rally’s configuration file (~/.rally/rally.ini) but
this is too inflexible given the increased JDK release cadence. In order to keep up, we define now the allowed runtime
JDKs in rally-teams per Elasticsearch version.

To resolve the path to the appropriate JDK you need to define the environment variable JAVA_HOME on each targeted
machine.

You can also set version-specific environment variables, e.g. JAVA7_HOME, JAVA8_HOME or JAVA10_HOMEwhich
will take precedence over JAVA_HOME.

2.22. Migration Guide 131

https://linux.die.net/man/8/logrotate
https://github.com/elastic/rally-teams/blob/master/cars/v1/vanilla/config.ini

Rally Documentation, Release 1.4.0

Note: Rally will choose the highest appropriate JDK per Elasticsearch version. You can use --runtime-jdk to
force a specific JDK version but the path will still be resolved according to the logic above.

Custom Parameter Sources

In Rally 0.10.0 we have deprecated some parameter names in custom parameter sources. In Rally 1.0.0, these dep-
recated names have been removed. Therefore you need to replace the following parameter names if you use them in
custom parameter sources:

Operation type Old name New name
search use_request_cache cache
search request_params request-params
search items_per_page results-per-page
bulk action_metadata_present action-metadata-present
force-merge max_num_segments max-num-segments

In Rally 0.9.0 the signature of custom parameter sources has also changed. In Rally 1.0.0 we have removed the
backwards compatibility layer so you need to change the signatures.

Old:

for parameter sources implemented as functions
def custom_param_source(indices, params):

for parameter sources implemented as classes
class CustomParamSource:

def __init__(self, indices, params):

New:

for parameter sources implemented as functions
def custom_param_source(track, params, **kwargs):

for parameter sources implemented as classes
class CustomParamSource:

def __init__(self, track, params, **kwargs):

You can use the property track.indices to access indices.

2.22.7 Migrating to Rally 0.11.0

Versioned teams

Note: You can skip this section if you do not create custom Rally teams.

We have introduced versioned team specifications and consequently the directory structure changes. All cars and
plugins need to reside in a version-specific subdirectory now. Up to now the structure of a team repository was as
follows:

132 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

.
cars

1gheap.ini
2gheap.ini
defaults.ini
ea

config
jvm.options

ea.ini
vanilla

config
elasticsearch.yml
jvm.options
log4j2.properties

plugins
core-plugins.txt
transport_nio

default
config

elasticsearch.yml
transport.ini

Starting with Rally 0.11.0, Rally will look for a directory “v1” within cars and plugins. The files that should
be copied to the Elasticsearch directory, need to be contained in a templates subdirectory. Therefore, the new
structure is as follows:

.
cars

v1
1gheap.ini
2gheap.ini
defaults.ini
ea

templates
config

jvm.options
ea.ini
vanilla

templates
config

elasticsearch.yml
jvm.options
log4j2.properties

plugins
v1

core-plugins.txt
transport_nio

default
templates

config
elasticsearch.yml

transport.ini

It is also required that you create a file variables.ini for all your car config bases (optional for mixins). There-
fore, the full directory structure is:

.

(continues on next page)

2.22. Migration Guide 133

Rally Documentation, Release 1.4.0

(continued from previous page)

cars
v1

1gheap.ini
2gheap.ini
defaults.ini
ea

templates
config

jvm.options
ea.ini
vanilla

config.ini
templates

config
elasticsearch.yml
jvm.options
log4j2.properties

plugins
v1

core-plugins.txt
transport_nio

default
templates

config
elasticsearch.yml

transport.ini

For distribution-based builds, config.ini file needs to contain a section variables and a release_url prop-
erty:

[variables]
release_url=https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-{
→˓{VERSION}}.tar.gz

2.22.8 Migrating to Rally 0.10.0

Removal of auto-detection and dependency on Gradle

We have removed the auto-detection and dependency on Gradle, required until now to build from source, in favor of
the Gradle Wrapper which is present in the Elasticsearch repository for all branches >= 5.0.0.

Use full build command in plugin configuration

With Rally 0.10.0 we have removed the property build.task for plugin definitions, in the source section of
the Rally configuration file. Instead, a new property build.command has been introduced where the full build
command needs to be supplied.

The earlier syntax, to build a hypothetical plugin called my-plugin alongside Elasticsearch, required:

plugin.my-plugin.build.task = :my-plugin:plugin:assemble

This needs to be changed to the full command:

134 Chapter 2. Source Code

https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://github.com/elastic/elasticsearch
elasticsearch_plugins.html#plugins-built-alongside-elasticsearch

Rally Documentation, Release 1.4.0

plugin.my-plugin.build.command = ./gradlew :my-plugin:plugin:assemble

Note that if you are configuring Plugins based on a released Elasticsearch version the command specified in build.
command will be executed from the plugins root directory. It’s likely this directory won’t have the Gradle Wrapper
so you’ll need to specify the full path to a Gradle command e.g.:

plugin.my-plugin.build.command = /usr/local/bin/gradle :my-plugin:plugin:assemble

Check Building plugins from sources for more information.

Removal of operation type index

We have removed the operation type index which has been deprecated with Rally 0.8.0. Use bulk instead as
operation type.

Removal of the command line parameter --cluster-health

We have removed the command line parameter --cluster-health which has been deprecated with Rally
0.8.0. When using Rally’s standard tracks, specify the expected cluster health as a track parameter instead, e.g.:
--track-params="cluster_health:'yellow'".

Removal of index-automanagement

We have removed the possibility that Rally automatically deletes and creates indices. Therefore, you need to add the
following definitions explicitly at the beginning of a schedule if you want Rally to create declared indices:

"schedule": [
{
"operation": "delete-index"

},
{
"operation": {

"operation-type": "create-index",
"settings": {

"index.number_of_replicas": 0
}

}
},
{
"operation": {

"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "green"
}

}
}

The example above also shows how to provide per-challenge index settings. If per-challenge index settings are not
required, you can just specify them in the index definition file.

This behavior applies similarly to index templates as well.

2.22. Migration Guide 135

elasticsearch_plugins.html#plugins-based-on-a-released-elasticsearch-version
elasticsearch_plugins.html#building-plugins-from-sources

Rally Documentation, Release 1.4.0

Custom Parameter Sources

We have aligned the internal names between parameter sources and runners with the ones that are specified by the
user in the track file. If you have implemented custom parameter sources or runners, adjust the parameter names as
follows:

Operation type Old name New name
search use_request_cache cache
search request_params request-params
search items_per_page results-per-page
bulk action_metadata_present action-metadata-present
force-merge max_num_segments max-num-segments

2.22.9 Migrating to Rally 0.9.0

Track Syntax

With Rally 0.9.0, we have changed the track file format. While the previous format is still supported with deprecation
warnings, we recommend that you adapt your tracks as we will remove the deprecated syntax with the next minor
release.

Below is an example of a track with the previous syntax:

{
"description": "Tutorial benchmark for Rally",
"data-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames",
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],
"challenge": {
"name": "index-only",
"index-settings": {

"index.number_of_replicas": 0
},
"schedule": [

{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000

},
"warmup-time-period": 120,
"clients": 8

}
]

(continues on next page)

136 Chapter 2. Source Code

Rally Documentation, Release 1.4.0

(continued from previous page)

}
}

Before Rally 0.9.0, indices have been created implicitly. We will remove this ability and thus you need to tell Rally
explicitly that you want to create indices. With Rally 0.9.0 your track should look as follows:

{
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"body": "index.json",
"auto-managed": false,
"types": ["type"]

}
],
"corpora": [
{

"name": "geonames",
"documents": [

{
"base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/

→˓geonames",
"source-file": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],
"challenge": {
"name": "index-only",
"schedule": [

{
"operation": "delete-index"

},
{

"operation": {
"operation-type": "create-index",
"settings": {
"index.number_of_replicas": 0

}
}

},
{

"operation": {
"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "green"
}

}
},
{

"operation": {
"operation-type": "bulk",
"bulk-size": 5000

(continues on next page)

2.22. Migration Guide 137

Rally Documentation, Release 1.4.0

(continued from previous page)

},
"warmup-time-period": 120,
"clients": 8

}
]

}
}

Let’s go through the necessary changes one by one.

Define the document corpus separately

Previously you had to define the document corpus together with the document type. In order to allow you to reuse
existing document corpora across tracks, you now need to specify any document corpora separately:

"corpora": [
{
"name": "geonames",
"documents": [

{
"base-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/

→˓geonames",
"source-file": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
]

Note that this is just a simple example that should cover the most basic case. Be sure to check the track reference for
all details.

Change the index definition

The new index definition now looks as follows:

{
"name": "geonames",
"body": "index.json",
"auto-managed": false,
"types": ["type"]

}

We have added a body property to the index and removed the mapping property from the type. In fact, the only
information that we need about the document type is its name, hence it is now a simple list of strings. Just put all type
mappings now into the mappings property of the index definition; see also the create index API documentation.

Secondly, we have disabled index auto-management by setting auto-managed to false. This allows us to define
explicit tasks below to manage our index. Note that index auto-management is still working in Rally 0.9.0 but it will
be removed with the next minor release Rally 0.10.0.

138 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html

Rally Documentation, Release 1.4.0

Explicitly delete and recreate the index

We have also added three tasks at the beginning of the schedule:

{
"operation": "delete-index"

},
{

"operation": {
"operation-type": "create-index",
"settings": {

"index.number_of_replicas": 0
}

}
},
{

"operation": {
"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "green"
}

}
}

These tasks represent what Rally previously did implicitly.

The first task will delete all indices that have been declared in the indices section if they existed previously. This
ensures that we don’t have any leftovers from previous benchmarks.

After that we will create all indices that have been declared in the indices section. Note that we have also removed
the special property index-settings and moved it to the settings parameter of create-index. Rally will
merge any settings from the index body definition with these settings. This means you should define settings that are
always the same in the index body and settings that change from challenge to challenge in the settings property.

Finally, Rally will check that the cluster health is green. If you want to be able to override the cluster health check
parameters from the command line, you can leverage Rally’s track parameter feature:

{
"operation": {
"operation-type": "cluster-health",
"request-params": {

"wait_for_status": "{{ cluster_health|default('green') }}"
}

}
}

If you don’t specify anything on the command line, Rally will use the default value but you can e.g. specify
--track-params="cluster_health:'yellow'" so Rally will check for (at least) a yellow cluster health
status.

Note that you can customize these operations.

Custom Parameter Sources

With Rally 0.9.0, the API for custom parameter sources has changed. Previously, the following syntax was valid:

2.22. Migration Guide 139

Rally Documentation, Release 1.4.0

for parameter sources implemented as functions
def custom_param_source(indices, params):

for parameter sources implemented as classes
class CustomParamSource:

def __init__(self, indices, params):

With Rally 0.9.0, the signatures need to be changed to:

for parameter sources implemented as functions
def custom_param_source(track, params, **kwargs):

for parameter sources implemented as classes
class CustomParamSource:

def __init__(self, track, params, **kwargs):

Rally will issue a warning along the lines of Parameter source 'custom_param_source' is using
deprecated method signature if your track is affected. If you need access to the indices list, you can
call track.indices to retrieve it from the track.

2.23 Frequently Asked Questions (FAQ)

2.23.1 A benchmark aborts with Couldn't find a tar.gz distribution.
What’s the problem?

This error occurs when Rally cannot build an Elasticsearch distribution from source code. The most likely cause is
that there is some problem building the Elasticsearch distribution.

To see what’s the problem, try building Elasticsearch yourself. First, find out where the source code is located (run
grep src ~/.rally/rally.ini). Then change to the directory (src.root.dir + elasticsearch.
src.subdir which is usually ~/.rally/benchmarks/src/elasticsearch) and run the following com-
mands:

./gradlew clean

./gradlew :distribution:tar:assemble

By that you are mimicking what Rally does. Fix any errors that show up here and then retry.

2.23.2 Where does Rally get the benchmark data from?

Rally comes with a set of tracks out of the box which we maintain in the rally-tracks repository on Github. This
repository contains the track descriptions. The actual data are stored as compressed files in an S3 bucket.

2.23.3 Will Rally destroy my existing indices?

First of all: Please (please, please) do NOT run Rally against your production cluster if you are just getting started
with it. You have been warned.

Depending on the track, Rally will delete and create one or more indices. For example, the geonames track specifies
that Rally should create an index named “geonames” and Rally will assume it can do to this index whatever it wants.
Specifically, Rally will check at the beginning of a race if the index “geonames” exists and delete it. After that it
creates a new empty “geonames” index and runs the benchmark. So if you benchmark against your own cluster (by

140 Chapter 2. Source Code

https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks/blob/master/geonames/track.json#L9

Rally Documentation, Release 1.4.0

specifying the benchmark-only pipeline) and this cluster contains an index that is called “geonames” you will lose
(all) data if you run Rally against it. Rally will neither read nor write (or delete) any other index. So if you apply the
usual care nothing bad can happen.

2.23.4 What does latency and service_time mean and how do they related to the
took field that Elasticsearch returns?

Let’s start with the took field of Elasticsearch. took is the time needed by Elasticsearch to process a request. As it is
determined on the server, it can neither include the time it took the client to send the data to Elasticsearch nor the time
it took Elasticsearch to send it to the client. This time is captured by service_time, i.e. it is the time period from the
start of a request (on the client) until it has received the response.

The explanation of latency is a bit more involved. First of all, Rally defines two benchmarking modes:

• Throughput benchmarking mode: In this mode, Rally will issue requests as fast as it can, i.e. as soon as it
receives a response, it will issue the next request. This is ideal for benchmarking indexing. In this mode
latency == service_time.

• Throughput-throttled mode: If you define a specific target throughput rate in a track, for example 100 requests
per second (you should choose this number based on the traffic pattern that you experience in your production
environment), then Rally will define a schedule internally and will issue requests according to this schedule
regardless how fast Elasticsearch can respond. To put it differently: Imagine you want to grab a coffee on your
way to work. You make this decision independently of all the other people going to the coffee shop so it is
possible that you need to wait before you can tell the barista which coffee you want. The time it takes the barista
to make your coffee is the service time. The service time is independent of the number of customers in the
coffee shop. However, you as a customer also care about the length of the waiting line which depends on the
number of customers in the coffee shop. The time it takes between you entering the coffee shop and taking your
first sip of coffee is latency.

If you are interested in latency measurement, we recommend you watch the following talks:

“How NOT to Measure Latency” by Gil Tene:

Benchmarking Elasticsearch with Rally by Daniel Mitterdorfer:

2.23.5 Where and how long does Rally keep its data?

Rally stores a lot of data (this is just the nature of a benchmark) so you should keep an eye on disk usage. All data are
kept in ~/.rally and Rally does not implicitly delete them. These are the most important directories:

• ~/.rally/logs: Contains all log files. Logs are rotated daily. If you don’t need the logs anymore, you can
safely wipe this directory.

• ~/.rally/benchmarks/races: telemetry data, Elasticsearch logs and even complete Elasticsearch in-
stallations including the data directory if a benchmark failed. If you don’t need the data anymore, you can safely
wipe this directory.

• ~/.rally/benchmarks/src: the Elasticsearch Github repository (only if you had Rally build Elastic-
search from sources at least once).

• ~/.rally/benchmarks/data: the benchmark data sets. This directory can get very huge (way more than
100 GB if you want to try all default tracks). You can delete the files in this directory but keep in mind that Rally
may needs to download them again.

• ~/.rally/benchmarks/distributions: Contains all downloaded Elasticsearch distributions.

There are a few more directories but the ones above are the most disk-hogging ones.

2.23. Frequently Asked Questions (FAQ) 141

Rally Documentation, Release 1.4.0

2.23.6 Does Rally spy on me?

No. Rally does not collect or send any usage data and also the complete source code is open. We do value your
feedback a lot though and if you got any ideas for improvements, found a bug or have any other feedback, head over
to Rally’s Discuss forum or raise an issue on Github.

2.23.7 Do I need an Internet connection?

You do NOT need Internet access on any node of your Elasticsearch cluster but the machine where you start Rally
needs an Internet connection to download track data sets and Elasticsearch distributions. After it has downloaded all
data, an Internet connection is not required anymore and you can specify --offline. If Rally detects no active
Internet connection, it will automatically enable offline mode and warn you.

We have a dedicated documentation page for running Rally offline which should cover all necessary details.

2.24 Glossary

track A track is the description of one or more benchmarking scenarios with a specific document corpus. It defines
for example the involved indices, data files and which operations are invoked. List the available tracks with
esrally list tracks. Although Rally ships with some tracks out of the box, you should usually create
your own track based on your own data.

challenge A challenge describes one benchmarking scenario, for example indexing documents at maximum through-
put with 4 clients while issuing term and phrase queries from another two clients rate-limited at 10 queries
per second each. It is always specified in the context of a track. See the available challenges by listing the
corresponding tracks with esrally list tracks.

car A car is a specific configuration of an Elasticsearch cluster that is benchmarked, for example the out-of-the-box
configuration, a configuration with a specific heap size or a custom logging configuration. List the available cars
with esrally list cars.

telemetry Telemetry is used in Rally to gather metrics about the car, for example CPU usage or index size.

race A race is one invocation of the Rally binary. Another name for that is one “benchmarking trial”. During a race,
Rally runs one challenge on a track with the given car.

tournament A tournament is a comparison of two races. You can use Rally’s tournament mode for that.

2.25 Community Resources

Below are a few community resources about Rally. If you find an interesting article, talk or custom tracks, raise an
issue or open a pull request.

2.25.1 Talks

2.25.2 Articles

Using Rally to benchmark Elasticsearch queries by Darren Smith

142 Chapter 2. Source Code

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally
https://github.com/elastic/rally/issues
https://github.com/elastic/rally/issues
https://github.com/elastic/rally/pulls
http://blog.scottlogic.com/2016/11/22/using-rally-to-benchmark-elasticsearch.html

CHAPTER 3

License

This software is licensed under the Apache License, version 2 (“ALv2”), quoted below.

Copyright 2015-2020 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

143

https://www.elastic.co
http://www.apache.org/licenses/LICENSE-2.0

Rally Documentation, Release 1.4.0

144 Chapter 3. License

Index

C
car, 142
challenge, 142

R
race, 142

T
telemetry, 142
tournament, 142
track, 142

145

	Getting Help or Contributing to Rally
	Source Code
	Quickstart
	Installation
	Running Rally with Docker
	Configuration
	Run a Benchmark: Races
	Compare Results: Tournaments
	Setting up a Cluster
	Tips and Tricks
	Define Custom Workloads: Tracks
	Developing Rally
	Elasticsearch Version Support
	Command Line Reference
	Offline Usage
	Track Reference
	Configure Elasticsearch: Cars
	Using Elasticsearch Plugins
	Telemetry Devices
	Rally Daemon
	Pipelines
	Metrics
	Summary Report
	Migration Guide
	Frequently Asked Questions (FAQ)
	Glossary
	Community Resources

	License
	Index

