
Rally Documentation
Release 0.8.0

Daniel Mitterdorfer

Nov 23, 2017

Getting Started with Rally

1 Getting Help or Contributing to Rally 3

2 Source Code 5
2.1 Quickstart . 5
2.2 Installation . 7
2.3 Configuration . 9
2.4 Run a Benchmark: Races . 13
2.5 Compare Results: Tournaments . 15
2.6 Tips and Tricks . 18
2.7 Define Custom Workloads: Tracks . 23
2.8 Developing Rally . 38
2.9 Command Line Reference . 39
2.10 Offline Usage . 49
2.11 Track Reference . 50
2.12 Configure Elasticsearch: Cars . 68
2.13 Using Elasticsearch Plugins . 71
2.14 Telemetry Devices . 77
2.15 Rally Daemon . 79
2.16 Pipelines . 80
2.17 Metrics . 82
2.18 Summary Report . 85
2.19 Frequently Asked Questions (FAQ) . 88
2.20 Glossary . 90
2.21 Community Resources . 91

3 License 93

i

ii

Rally Documentation, Release 0.8.0

You want to benchmark Elasticsearch? Then Rally is for you. It can help you with the following tasks:

• Setup and teardown of an Elasticsearch cluster for benchmarking

• Management of benchmark data and specifications even across Elasticsearch versions

• Running benchmarks and recording results

• Finding performance problems by attaching so-called telemetry devices

• Comparing performance results

We have also put considerable effort in Rally to ensure that benchmarking data are reproducible.

In general, Rally works with all versions of Elasticsearch starting from 1.x. Benchmarking with plugins and bench-
marking source builds will only work from Elasticsearch 5.0 onwards.

Getting Started with Rally 1

Rally Documentation, Release 0.8.0

2 Getting Started with Rally

CHAPTER 1

Getting Help or Contributing to Rally

Use our Discuss forum to provide feedback or ask questions about Rally. Please see our contribution guide on guide-
lines for contributors.

3

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 0.8.0

4 Chapter 1. Getting Help or Contributing to Rally

CHAPTER 2

Source Code

Rally’s source code is available on Github. You can also check the changelog and the roadmap there.

2.1 Quickstart

2.1.1 Install

Install Python 3.4+ including pip3, JDK 8 or 9 and git 1.9+. Then run the following command, optionally prefixed
by sudo if necessary:

pip3 install esrally

If you have any trouble or need more detailed instructions, please look in the detailed installation guide.

2.1.2 Configure

Just invoke esrally configure.

For more detailed instructions and a detailed walkthrough see the configuration guide.

2.1.3 Run your first race

Now we’re ready to run our first race:

esrally --distribution-version=6.0.0

This will download Elasticsearch 6.0.0 and run Rally’s default track - the geonames track - against it. After the race,
a summary report is written to the command line::

5

https://github.com/elastic/rally
https://github.com/elastic/rally/releases
https://github.com/elastic/rally/milestones
https://github.com/elastic/rally-tracks/tree/master/geonames

Rally Documentation, Release 0.8.0

--
_______ __ _____

/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

Metric	Task	Value	Unit
Indexing time		28.0997	min
Merge time		6.84378	min
Refresh time		3.06045	min
Flush time		0.106517	min
Merge throttle time		1.28193	min
Median CPU usage		471.6	%
Total Young Gen GC		16.237	s
Total Old Gen GC		1.796	s
Index size		2.60124	GB
Totally written		11.8144	GB
Heap used for segments		14.7326	MB
Heap used for doc values		0.115917	MB
Heap used for terms		13.3203	MB
Heap used for norms		0.0734253	MB
Heap used for points		0.5793	MB
Heap used for stored fields		0.643608	MB
Segment count		97	
Min Throughput	index-append	31925.2	docs/s
Median Throughput	index-append	39137.5	docs/s
Max Throughput	index-append	39633.6	docs/s
50.0th percentile latency	index-append	872.513	ms
90.0th percentile latency	index-append	1457.13	ms
99.0th percentile latency	index-append	1874.89	ms
100th percentile latency	index-append	2711.71	ms
50.0th percentile service time	index-append	872.513	ms
90.0th percentile service time	index-append	1457.13	ms
99.0th percentile service time	index-append	1874.89	ms
100th percentile service time	index-append	2711.71	ms
...
...
Min Throughput	painless_dynamic	2.53292	ops/s
Median Throughput	painless_dynamic	2.53813	ops/s
Max Throughput	painless_dynamic	2.54401	ops/s
50.0th percentile latency	painless_dynamic	172208	ms
90.0th percentile latency	painless_dynamic	310401	ms
99.0th percentile latency	painless_dynamic	341341	ms
99.9th percentile latency	painless_dynamic	344404	ms
100th percentile latency	painless_dynamic	344754	ms
50.0th percentile service time	painless_dynamic	393.02	ms
90.0th percentile service time	painless_dynamic	407.579	ms
99.0th percentile service time	painless_dynamic	430.806	ms
99.9th percentile service time	painless_dynamic	457.352	ms
100th percentile service time	painless_dynamic	459.474	ms

[INFO] SUCCESS (took 2634 seconds)

6 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

2.1.4 Next steps

Now you can check how to run benchmarks, get a better understanding how to interpret the numbers in the summary
report or start to create your own tracks. Be sure to check also some tips and tricks to help you understand how to
solve specific problems in Rally.

Also run esrally --help to see what options are available and keep the command line reference handy for more
detailed explanations of each option.

2.2 Installation

This is the detailed installation guide for Rally. If you are in a hurry you can check the quickstart guide.

2.2.1 Prerequisites

Rally does not support Windows and is only actively tested on MacOS and Linux. Before installing Rally, please
ensure that the following packages are installed.

Python

• Python 3.4 or better available as python3 on the path. Verify with: python3 --version.

• Python3 header files (included in the Python3 development package).

• pip3 available on the path. Verify with pip3 --version.

Debian / Ubuntu

sudo apt-get install gcc python3-pip python3-dev

RHEL 6/ CentOS 6

Tested on CentOS release 6.9 (Final).

Note: You will need to enable EPEL before.

sudo yum install -y gcc python34.x86_64 python34-devel.x86_64 python34-setuptools.
→˓noarch
installs pip as it is not available as an OS package
sudo python3 /usr/lib/python3.4/site-packages/easy_install.py pip

RHEL 7 / CentOS 7

Note: You will need to enable EPEL before.

Tested on CentOS Linux release 7.4.1708 (Core).

sudo yum install -y gcc python34.x86_64 python34-devel.x86_64 python34-pip.noarch

Amazon Linux

2.2. Installation 7

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

Rally Documentation, Release 0.8.0

sudo yum install -y gcc python35-pip.noarch python35-devel.x86_64

MacOS

We recommend that you use Homebrew:

brew install python3

git

git 1.9 or better is required. Verify with git --version.

Debian / Ubuntu

sudo apt-get install git

Red Hat / CentOS / Amazon Linux

sudo yum install git

Note: If you use RHEL, please ensure to install a recent version of git via the Red Hat Software Collections.

MacOS

git is already installed on MacOS.

JDK

A JDK is required on all machines where you want to launch Elasticsearch. If you use Rally just as a load generator,
no JDK is required.

We recommend to use Oracle JDK but you are free to use OpenJDK as well. For details on how to install a JDK,
please see your operating system’s documentation pages.

2.2.2 Installing Rally

Simply install Rally with pip: pip3 install esrally

Note: Depending on your system setup you may need to prepend this command with sudo.

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Please ensure that you have installed the Python development package as documented in
the prerequisites section above.

2.2.3 Non-sudo Install

If you don’t want to use sudo when installing Rally, installation is still possible but a little more involved:

1. Specify the --user option when installing Rally (step 2 above), so the command to be issued is: python3
setup.py develop --user.

8 Chapter 2. Source Code

https://brew.sh/
https://www.softwarecollections.org/en/scls/rhscl/git19/

Rally Documentation, Release 0.8.0

2. Check the output of the install script or lookup the Python documentation on the variable site.USER_BASE to
find out where the script is located. On Linux, this is typically ~/.local/bin.

You can now either add ~/.local/bin to your path or invoke Rally via ~/.local/bin/esrally instead of
just esrally.

2.2.4 VirtualEnv Install

You can also use Virtualenv to install Rally into an isolated Python environment without sudo.

1. Set up a new virtualenv environment in a directory with virtualenv --python=python3 .

2. Activate the environment with source /path/to/virtualenv/dir/bin/activate

3. Install Rally with pip install esrally

Whenever you want to use Rally, run the activation script (step 2 above) first. When you are done, simply execute
deactivate in the shell to exit the virtual environment.

2.2.5 Offline Install

If you are in a corporate environment where your servers do not have any access to the Internet, you can use Rally’s
offline installation package. Follow these steps to install Rally:

1. Install all prerequisites as documented above.

2. Download the offline installation package for the latest release and copy it to the target machine(s).

3. Decompress the installation package with tar -xzf esrally-dist-*.tar.gz.

4. Run the install script with sudo ./esrally-dist-*/install.sh.

2.2.6 Next Steps

After you have installed Rally, you need to configure it. Just run esrally configure or follow the configuration
help page for more guidance.

2.3 Configuration

Rally has to be configured once after installation. If you just run esrally after installing Rally, it will detect that the
configuration file is missing and asks you a few questions.

If you want to reconfigure Rally at any later time, just run esrally configure again.

2.3.1 Simple Configuration

By default, Rally will run a simpler configuration routine and autodetect as much settings as possible or choose defaults
for you. If you need more control you can run Rally with esrally configure --advanced-config.

Rally can build Elasticsearch either from sources or use an official binary distribution. If you have Rally build Elas-
ticsearch from sources, it can only be used to benchmark Elasticsearch 5.0 and above. The reason is that with Elas-
ticsearch 5.0 the build tool was switched from Maven to Gradle. As Rally only supports Gradle, it is limited to
Elasticsearch 5.0 and above.

If you want to build Elasticsearch from sources, Gradle needs to be installed prior to running the configuration routine.

2.3. Configuration 9

https://docs.python.org/3.5/library/site.html#site.USER_BASE
https://github.com/elastic/rally/releases/latest
https://www.elastic.co/downloads/elasticsearch

Rally Documentation, Release 0.8.0

Let’s go through an example step by step: First run esrally:

dm@io:~ $ esrally

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. You can run the advanced configuration with:

esrally configure --advanced-config

* Autodetecting available third-party software
git : [OK]
gradle : [OK]
JDK : [OK]

* Setting up benchmark data directory in /Users/dm/.rally/benchmarks

As you can see above, Rally autodetects if git, Gradle and a JDK are installed. If you don’t have Gradle, that’s no
problem, you are just not able to build Elasticsearch from sources. Let’s assume you don’t have Gradle installed:

dm@io:~ $ esrally

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Running simple configuration. You can run the advanced configuration with:

esrally configure --advanced-config

* Autodetecting available third-party software
git : [OK]
gradle : [MISSING]
JDK 8 : [OK]

**
You don't have the required software to benchmark Elasticsearch source builds.

You can still benchmark binary distributions with e.g.:

esrally --distribution-version=5.0.0

**

As you can see, Rally tells you that you cannot build Elasticsearch from sources but you can still benchmark official
binary distributions.

It’s also possible that Rally cannot automatically find your JDK 8 or JDK 9 home directory. In that case, it will ask
you later in the configuration process. If you do not provide a JDK home directory, Rally cannot start Elasticsearch on
this machine but you can still use it as a load generator to benchmark remote clusters.

After running the initial detection, Rally will try to autodetect your Elasticsearch project directory (either in the current

10 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

directory or in ../elasticsearch) or will choose a default directory:

* Setting up benchmark data directory in /Users/dm/.rally/benchmarks

* Setting up benchmark source directory in /Users/dm/.rally/benchmarks/src/
→˓elasticsearch

If Rally has not found Gradle in the first step, it will not ask you for a source directory and just go on.

Now Rally is done:

Configuration successfully written to /Users/dm/.rally/rally.ini. Happy benchmarking!

To benchmark Elasticsearch with the default benchmark, run:

esrally

More info about Rally:

* Type esrally --help

* Read the documentation at https://esrally.readthedocs.io/en/latest/

* Ask a question on the forum at https://discuss.elastic.co/c/elasticsearch/rally

Congratulations! Time to run your first benchmark.

2.3.2 Advanced Configuration

If you need more control over a few variables or want to store your metrics in a dedicated Elasticsearch metrics store,
then you should run the advanced configuration routine. You can invoke it at any time with esrally configure
--advanced-config.

Prerequisites

When using the advanced configuration, you can choose that Rally stores its metrics not in-memory but in a dedicated
Elasticsearch instance. Therefore, you will also need the following software installed:

• Elasticsearch: a dedicated Elasticsearch instance which acts as the metrics store for Rally. If you don’t want to
set it up yourself you can also use Elastic Cloud.

• Optional: Kibana (also included in Elastic Cloud).

Preparation

First install Elasticsearch 5.0 or higher. A simple out-of-the-box installation with a single node will suffice. Rally uses
this instance to store metrics data. It will setup the necessary indices by itself. The configuration procedure of Rally
will you ask for host and port of this cluster.

Note: Rally will choose the port range 39200-39300 (HTTP) and 39300-39400 (transport) for the benchmark cluster,
so please ensure that this port range is not used by the metrics store.

Optional but recommended is to install also Kibana. However, note that Kibana will not be auto-configured by Rally.

2.3. Configuration 11

https://www.elastic.co/cloud
https://www.elastic.co/cloud
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana

Rally Documentation, Release 0.8.0

Configuration Options

Rally will ask you a few more things in the advanced setup:

• Benchmark data directory: Rally stores all benchmark related data in this directory which can take up to
several tens of GB. If you want to use a dedicated partition, you can specify a different data directory here.

• Elasticsearch project directory: This is the directory where the Elasticsearch sources are located. If you don’t
actively develop on Elasticsearch you can just leave the default but if you want to benchmark local changes you
should point Rally to your project directory. Note that Rally will run builds with Gradle in this directory (it runs
gradle clean and gradle :distribution:tar:assemble).

• JDK root directory: Rally will only ask this if it could not autodetect the JDK home by itself. Just enter the
root directory of the JDK you want to use. By default, Rally will choose Java 8 if available and fallback to Java
9.

• Metrics store type: You can choose between in-memory which requires no additional setup or
elasticsearch which requires that you start a dedicated Elasticsearch instance to store metrics but gives
you much more flexibility to analyse results.

• Metrics store settings (only for metrics store type elasticsearch): Provide the connection details to the
Elasticsearch metrics store. This should be an instance that you use just for Rally but it can be a rather small
one. A single node cluster with default setting should do it.

• Name for this benchmark environment (only for metrics store type elasticsearch): You can use the
same metrics store for multiple environments (e.g. local, continuous integration etc.) so you can separate
metrics from different environments by choosing a different name.

• whether or not Rally should keep the Elasticsearch benchmark candidate installation including all data by de-
fault. This will use lots of disk space so you should wipe ~/.rally/benchmarks/races regularly.

2.3.3 Proxy Configuration

Rally downloads all necessary data automatically for you:

• Elasticsearch distributions from elastic.co if you specify --distribution-version=SOME_VERSION_NUMBER

• Elasticsearch source code from Github if you specify a revision number e.g. --revision=952097b

• Track meta-data from Github

• Track data from an S3 bucket

Hence, it needs to connect via http(s) to the outside world. If you are behind a corporate proxy you need to configure
Rally and git. As many other Unix programs, Rally relies that the HTTP proxy URL is available in the environment
variable http_proxy (note that this is in lower-case). Hence, you should add this line to your shell profile, e.g.
~/.bash_profile:

export http_proxy=http://proxy.acme.org:8888/

Afterwards, source the shell profile with source ~/.bash_profile and verify that the proxy URL is correctly
set with echo $http_proxy.

Finally, you can set up git:

git config --global http.proxy $http_proxy

For details, please refer to the Git config documentation.

Please verify that the proxy setup for git works correctly by cloning any repository, e.g. the rally-tracks reposi-
tory:

12 Chapter 2. Source Code

https://git-scm.com/docs/git-config

Rally Documentation, Release 0.8.0

git clone https://github.com/elastic/rally-tracks.git

If the configuration is correct, git will clone this repository. You can delete the folder rally-tracks after this
verification step.

To verify that Rally will connect via the proxy server you can check the log file. If the proxy server is configured
successfully, Rally will log the following line on startup:

Rally connects via proxy URL [http://proxy.acme.org:3128/] to the Internet (picked up
→˓from the environment variable [http_proxy]).

Note: Rally will use this proxy server only for downloading benchmark-related data. It will not use this proxy for the
actual benchmark.

2.4 Run a Benchmark: Races

2.4.1 Definition

A “race” in Rally is the execution of a benchmarking experiment. You can choose different benchmarking scenarios
(called tracks) for your benchmarks.

2.4.2 List Tracks

Start by finding out which tracks are available:

esrally list tracks

This will show the following list:

Name Description Documents
→˓Compressed Size Uncompressed Size Default Challenge All Challenges
---------- --- ----------- ----------
→˓------- ------------------- ----------------------- ---------------------------
geonames POIs from Geonames 11396505 252.4 MB
→˓ 3.3 GB append-no-conflicts append-no-conflicts,appe...
geopoint Point coordinates from PlanetOSM 60844404 481.9 MB
→˓ 2.3 GB append-no-conflicts append-no-conflicts,appe...
logging HTTP server log data 247249096 1.2 GB
→˓ 31.1 GB append-no-conflicts append-no-conflicts,appe...
nested StackOverflow Q&A stored as nested docs 11203029 663.1 MB
→˓ 3.4 GB nested-search-challenge nested-search-challenge,...
noaa Global daily weather measurements from NOAA 33659481 947.3 MB
→˓ 9.0 GB append-no-conflicts append-no-conflicts,appe...
nyc_taxis Taxi rides in New York in 2015 165346692 4.5 GB
→˓ 74.3 GB append-no-conflicts append-no-conflicts,appe...
percolator Percolator benchmark based on AOL queries 2000000 102.7 kB
→˓ 104.9 MB append-no-conflicts append-no-conflicts,appe...
pmc Full text benchmark with academic papers from PMC 574199 5.5 GB
→˓ 21.7 GB append-no-conflicts append-no-conflicts,appe...

The first two columns show the name and a description of each track. A track also specifies one or more challenges
which describe the workload to run.

2.4. Run a Benchmark: Races 13

Rally Documentation, Release 0.8.0

2.4.3 Starting a Race

Note: Do not run Rally as root as Elasticsearch will refuse to start with root privileges.

To start a race you have to define the track and challenge to run. For example:

esrally --distribution-version=6.0.0 --track=geopoint --challenge=append-fast-with-
→˓conflicts

Rally will then start racing on this track. If you have never started Rally before, it should look similar to the following
output:

dm@io:~ $ esrally --distribution-version=6.0.0 --track=geopoint --challenge=append-
→˓fast-with-conflicts

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

[INFO] Racing on track [geopoint], challenge [append-fast-with-conflicts] and car [
→˓'defaults'] with version [6.0.0].
[INFO] Downloading Elasticsearch 6.0.0 ... [OK]
[INFO] Rally will delete the benchmark candidate after the benchmark
[INFO] Downloading data from [http://benchmarks.elasticsearch.org.s3.amazonaws.com/
→˓corpora/geopoint/documents.json.bz2] (482 MB) to [/Users/dm/.rally/benchmarks/data/
→˓geopoint/documents.json.bz2] ... [OK]
[INFO] Decompressing track data from [/Users/dm/.rally/benchmarks/data/geopoint/
→˓documents.json.bz2] to [/Users/dm/.rally/benchmarks/data/geopoint/documents.json]
→˓(resulting size: 2.28 GB) ... [OK]
[INFO] Preparing file offset table for [/Users/dm/.rally/benchmarks/data/geopoint/
→˓documents.json] ... [OK]
Running index-update [0%
→˓done]

Please be patient as it will take a while to run the benchmark.

When the race has finished, Rally will show a summary on the command line:

Metric	Task	Value	Unit
Indexing time		124.712	min
Merge time		21.8604	min
Refresh time		4.49527	min
Merge throttle time		0.120433	min
Median CPU usage		546.5	%
Total Young Gen GC		72.078	s
Total Old Gen GC		3.426	s
Index size		2.26661	GB
Totally written		30.083	GB
Heap used for segments		10.7148	MB
Heap used for doc values		0.0135536	MB
Heap used for terms		9.22965	MB
Heap used for points		0.78789	MB
Heap used for stored fields		0.683708	MB

14 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

Segment count		115	
Min Throughput	index-update	59210.4	docs/s
Median Throughput	index-update	65276.2	docs/s
Max Throughput	index-update	76516.6	docs/s
50.0th percentile latency	index-update	556.269	ms
90.0th percentile latency	index-update	852.779	ms
99.0th percentile latency	index-update	1854.31	ms
99.9th percentile latency	index-update	2972.96	ms
99.99th percentile latency	index-update	4106.91	ms
100th percentile latency	index-update	4542.84	ms
50.0th percentile service time	index-update	556.269	ms
90.0th percentile service time	index-update	852.779	ms
99.0th percentile service time	index-update	1854.31	ms
99.9th percentile service time	index-update	2972.96	ms
99.99th percentile service time	index-update	4106.91	ms
100th percentile service time	index-update	4542.84	ms
Min Throughput	force-merge	0.221067	ops/s
Median Throughput	force-merge	0.221067	ops/s
Max Throughput	force-merge	0.221067	ops/s
100th percentile latency	force-merge	4523.52	ms
100th percentile service time	force-merge	4523.52	ms

[INFO] SUCCESS (took 1624 seconds)

Note: You can save this report also to a file by using --report-file=/path/to/your/report.md and save
it as CSV with --report-format=csv.

What did Rally just do?

• It downloaded and started Elasticsearch 6.0.0

• It downloaded the relevant data for the geopoint track

• It ran the actual benchmark

• And finally it reported the results

If you are curious about the operations that Rally has run, please inspect the geopoint track specification or start to
write your own tracks. You can also configure Rally to store all data samples in Elasticsearch so you can analyze the
results with Kibana. Finally, you may want to change the Elasticsearch configuration.

2.5 Compare Results: Tournaments

Suppose, we want to analyze the impact of a performance improvement.

First, we need a baseline measurement. For example:

esrally --track=pmc --revision=latest --user-tag="intention:baseline_github_1234"

Above we run the baseline measurement based on the latest source code revision of Elasticsearch. We can use the
command line parameter --user-tag to provide a key-value pair to document the intent of a race.

2.5. Compare Results: Tournaments 15

https://github.com/elastic/rally-tracks/blob/5/geopoint/track.json

Rally Documentation, Release 0.8.0

Then we implement our changes and finally we want to run another benchmark to see the performance impact of the
change. In that case, we do not want Rally to change our source tree and thus specify the pseudo-revision current:

esrally --track=pmc --revision=current --user-tag="intention:reduce_alloc_1234"

After we’ve run both races, we want to know about the performance impact. With Rally we can analyze differences of
two given races easily. First of all, we need to find two races to compare by issuing esrally list races:

dm@io:~ $ esrally list races

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Recent races:

Race Timestamp Track Track Parameters Challenge Car User Tag
---------------- ------- ------------------ ------------------- -------- ---------
→˓---------------------
20160518T122341Z pmc append-no-conflicts defaults
→˓intention:reduce_alloc_1234
20160518T112057Z pmc append-no-conflicts defaults
→˓intention:baseline_github_1234
20160518T101957Z pmc append-no-conflicts defaults

We can see that the user tag helps us to recognize races. We want to compare the two most recent races and have to
provide the two race timestamps in the next step:

dm@io:~ $ esrally compare --baseline=20160518T112057Z --contender=20160518T112341Z

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Comparing baseline
Race timestamp: 2016-05-18 11:20:57
Challenge: append-no-conflicts
Car: defaults

with contender
Race timestamp: 2016-05-18 12:23:41
Challenge: append-no-conflicts
Car: defaults

--
_______ __ _____

/ ____(_)___ ____ _/ / / ___/_________ ________
/ /_ / / __ \/ __ `/ / __ \/ ___/ __ \/ ___/ _ \

/ __/ / / / / / /_/ / / ___/ / /__/ /_/ / / / __/
/_/ /_/_/ /_/__,_/_/ /____/___/____/_/ ___/
--

Metric Baseline Contender
→˓ Diff

16 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

-- ---------- ----------- ---
→˓--------------

Min Indexing Throughput [docs/s] 19501 19118 -
→˓383.00000

Median Indexing Throughput [docs/s] 20232 19927.5 -
→˓304.45833

Max Indexing Throughput [docs/s] 21172 20849 -
→˓323.00000

Indexing time [min] 55.7989 56.335
→˓+0.53603

Merge time [min] 12.9766 13.3115
→˓+0.33495

Refresh time [min] 5.20067 5.20097
→˓+0.00030

Flush time [min] 0.0648667 0.0681833
→˓+0.00332

Merge throttle time [min] 0.796417 0.879267
→˓+0.08285

Query latency term (50.0 percentile) [ms] 2.10049 2.15421
→˓+0.05372

Query latency term (90.0 percentile) [ms] 2.77537 2.84168
→˓+0.06630

Query latency term (100.0 percentile) [ms] 4.52081 5.15368
→˓+0.63287

Query latency country_agg (50.0 percentile) [ms] 112.049 110.385 -
→˓1.66392

Query latency country_agg (90.0 percentile) [ms] 128.426 124.005 -
→˓4.42138

Query latency country_agg (100.0 percentile) [ms] 155.989 133.797 -
→˓22.19185

Query latency scroll (50.0 percentile) [ms] 16.1226 14.4974 -
→˓1.62519

Query latency scroll (90.0 percentile) [ms] 17.2383 15.4079 -
→˓1.83043

Query latency scroll (100.0 percentile) [ms] 18.8419 18.4241 -
→˓0.41784
Query latency country_agg_cached (50.0 percentile) [ms] 1.70223 1.64502 -
→˓0.05721
Query latency country_agg_cached (90.0 percentile) [ms] 2.34819 2.04318 -
→˓0.30500
Query latency country_agg_cached (100.0 percentile) [ms] 3.42547 2.86814 -
→˓0.55732

Query latency default (50.0 percentile) [ms] 5.89058 5.83409 -
→˓0.05648

Query latency default (90.0 percentile) [ms] 6.71282 6.64662 -
→˓0.06620

Query latency default (100.0 percentile) [ms] 7.65307 7.3701 -
→˓0.28297

Query latency phrase (50.0 percentile) [ms] 1.82687 1.83193
→˓+0.00506

Query latency phrase (90.0 percentile) [ms] 2.63714 2.46286 -
→˓0.17428

Query latency phrase (100.0 percentile) [ms] 5.39892 4.22367 -
→˓1.17525

Median CPU usage (index) [%] 668.025 679.15
→˓+11.12499

Median CPU usage (stats) [%] 143.75 162.4
→˓+18.64999

2.5. Compare Results: Tournaments 17

Rally Documentation, Release 0.8.0

Median CPU usage (search) [%] 223.1 229.2
→˓+6.10000

Total Young Gen GC [s] 39.447 40.456
→˓+1.00900

Total Old Gen GC [s] 7.108 7.703
→˓+0.59500

Index size [GB] 3.25475 3.25098 -
→˓0.00377

Totally written [GB] 17.8434 18.3143
→˓+0.47083

Heap used for segments [MB] 21.7504 21.5901 -
→˓0.16037

Heap used for doc values [MB] 0.16436 0.13905 -
→˓0.02531

Heap used for terms [MB] 20.0293 19.9159 -
→˓0.11345

Heap used for norms [MB] 0.105469 0.0935669 -
→˓0.01190

Heap used for points [MB] 0.773487 0.772155 -
→˓0.00133

Heap used for points [MB] 0.677795 0.669426 -
→˓0.00837

Segment count 136 121 -
→˓15.00000

Indices Stats(90.0 percentile) [ms] 3.16053 3.21023
→˓+0.04969

Indices Stats(99.0 percentile) [ms] 5.29526 3.94132 -
→˓1.35393

Indices Stats(100.0 percentile) [ms] 5.64971 7.02374
→˓+1.37403

Nodes Stats(90.0 percentile) [ms] 3.19611 3.15251 -
→˓0.04360

Nodes Stats(99.0 percentile) [ms] 4.44111 4.87003
→˓+0.42892

Nodes Stats(100.0 percentile) [ms] 5.22527 5.66977
→˓+0.44450

2.6 Tips and Tricks

This section covers various tips and tricks when using Rally in a recipe-style fashion.

2.6.1 Benchmarking an existing cluster

Warning: If you are just getting started with Rally and don’t understand how it works, please do NOT run it
against any production or production-like cluster. Besides, benchmarks should be executed in a dedicated environ-
ment anyway where no additional traffic skews results.

Note: We assume in this recipe, that Rally is already properly configured.

18 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

Consider the following configuration: You have an existing benchmarking cluster, that consists of three Elasticsearch
nodes running on 10.5.5.10, 10.5.5.11, 10.5.5.12. You’ve setup the cluster yourself and want to benchmark
it with Rally. Rally is installed on 10.5.5.5.

First of all, we need to decide on a track. So, we run esrally list tracks:

Name Description Documents
→˓Compressed Size Uncompressed Size Default Challenge All Challenges
---------- --- ----------- ----------
→˓------- ------------------- ----------------------- ---------------------------
geonames POIs from Geonames 11396505 252.4 MB
→˓ 3.3 GB append-no-conflicts append-no-conflicts,appe...
geopoint Point coordinates from PlanetOSM 60844404 481.9 MB
→˓ 2.3 GB append-no-conflicts append-no-conflicts,appe...
logging HTTP server log data 247249096 1.2 GB
→˓ 31.1 GB append-no-conflicts append-no-conflicts,appe...
nested StackOverflow Q&A stored as nested docs 11203029 663.1 MB
→˓ 3.4 GB nested-search-challenge nested-search-challenge,...
noaa Global daily weather measurements from NOAA 33659481 947.3 MB
→˓ 9.0 GB append-no-conflicts append-no-conflicts,appe...
nyc_taxis Taxi rides in New York in 2015 165346692 4.5 GB
→˓ 74.3 GB append-no-conflicts append-no-conflicts,appe...
percolator Percolator benchmark based on AOL queries 2000000 102.7 kB
→˓ 104.9 MB append-no-conflicts append-no-conflicts,appe...
pmc Full text benchmark with academic papers from PMC 574199 5.5 GB
→˓ 21.7 GB append-no-conflicts append-no-conflicts,appe...

We’re interested in a full text benchmark, so we’ll choose to run pmc. If you have your own data that you want to
use for benchmarks, then please create your own track instead; the metrics you’ll gather which be representative and
much more useful than some default track.

Next, we need to know which machines to target which is easy as we can see that from the diagram above.

Finally we need to check which pipeline to use. For this case, the benchmark-only pipeline is suitable as we don’t
want Rally to provision the cluster for us.

Now we can invoke Rally:

esrally --track=pmc --target-hosts=10.5.5.10:9200,10.5.5.11:9200,10.5.5.12:9200 --
→˓pipeline=benchmark-only

If you have X-Pack Security enabled, then you’ll also need to specify another parameter to use https and to pass
credentials:

esrally --track=pmc --target-hosts=10.5.5.10:9243,10.5.5.11:9243,10.5.5.12:9243 --
→˓pipeline=benchmark-only --client-options="use_ssl:true,verify_certs:true,basic_auth_
→˓user:'elastic',basic_auth_password:'changeme'"

2.6. Tips and Tricks 19

https://www.elastic.co/products/x-pack/security

Rally Documentation, Release 0.8.0

2.6.2 Benchmarking a remote cluster

Contrary to the previous recipe, you want Rally to provision all cluster nodes.

We will use the following configuration for the example:

• You will start Rally on 10.5.5.5. We will call this machine the “benchmark coordinator”.

• Your Elasticsearch cluster will consist of two nodes which run on 10.5.5.10 and 10.5.5.11. We will call
these machines the “benchmark candidate”s.

Note: All esrallyd nodes form a cluster that communicates via the “benchmark coordinator”. For aesthetic
reasons we do not show a direct connection between the “benchmark coordinator” and all nodes.

To run a benchmark for this scenario follow these steps:

1. Install and configure Rally on all machines. Be sure that the same version is installed on all of them and fully
configured.

2. Start the Rally daemon on each machine. The Rally daemon allows Rally to communicate with all
remote machines. On the benchmark coordinator run esrallyd start --node-ip=10.5.5.
5 --coordinator-ip=10.5.5.5 and on the benchmark candidate machines run esrallyd
start --node-ip=10.5.5.10 --coordinator-ip=10.5.5.5 and esrallyd start
--node-ip=10.5.5.11 --coordinator-ip=10.5.5.5 respectively. The --node-ip pa-
rameter tells Rally the IP of the machine on which it is running. As some machines have more than one network
interface, Rally will not attempt to auto-detect the machine IP. The --coordinator-ip parameter tells
Rally the IP of the benchmark coordinator node.

20 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

3. Start the benchmark by invoking Rally as usual on the benchmark coordinator, for example: esrally
--distribution-version=5.0.0 --target-hosts=10.5.5.10:9200,10.5.5.11:9200.
Rally will derive from the --target-hosts parameter that it should provision the nodes 10.5.5.10 and
10.5.5.11.

4. After the benchmark has finished you can stop the Rally daemon again. On the benchmark coordinator and on
the benchmark candidates run esrallyd stop.

Note: Logs are managed per machine, so all relevant log files and also telemetry output is stored on the benchmark
candidates but not on the benchmark coordinator.

Now you might ask yourself what the differences to benchmarks of existing clusters are. In general you should aim to
give Rally as much control as possible as benchmark are easier reproducible and you get more metrics. The following
table provides some guidance on when to choose which option:

Your requirement Recommendation
You want to use Rally’s
telemetry devices

Use Rally daemon, as it can provision the remote node for you

You want to benchmark a
source build of
Elasticsearch

Use Rally daemon, as it can build Elasticsearch for you

You want to tweak the
cluster configuration
yourself

Use Rally daemon with a custom configuration or set up the cluster by yourself
and use --pipeline=benchmark-only

You need to run a
benchmark with plugins

Use Rally daemon if the plugins are supported or set up the cluster by yourself and
use --pipeline=benchmark-only

You need to run a
benchmark against multiple
nodes

Use Rally daemon if all nodes can be configured identically. For more complex
cases, set up the cluster by yourself and use --pipeline=benchmark-only

Rally daemon will be able to cover most of the cases described above in the future so there should be almost no case
where you need to use the benchmark-only pipeline.

2.6.3 Distributing the load test driver

By default, Rally will generate load on the same machine where you start a benchmark. However, when you are
benchmarking larger clusters, a single load test driver machine may not be able to generate sufficient load. In these
cases, you should use multiple load driver machines. We will use the following configuration for the example:

• You will start Rally on 10.5.5.5. We will call this machine the “benchmark coordinator”.

• You will start two load drivers on 10.5.5.6 and 10.5.5.7. Note that one load driver will simulate multiple
clients. Rally will simply assign clients to load driver machines in a round-robin fashion.

• Your Elasticsearch cluster will consist of three nodes which run on 10.5.5.11, 10.5.5.12 and 10.5.
5.13. We will call these machines the “benchmark candidate”. For simplicity, we will assume an externally
provisioned cluster but you can also use Rally to setup the cluster for you (see above).

2.6. Tips and Tricks 21

Rally Documentation, Release 0.8.0

1. Install and configure Rally on all machines. Be sure that the same version is installed on all of them and fully
configured.

2. Start the Rally daemon on each machine. The Rally daemon allows Rally to communicate with
all remote machines. On the benchmark coordinator run esrallyd start --node-ip=10.
5.5.5 --coordinator-ip=10.5.5.5 and on the load driver machines run esrallyd
start --node-ip=10.5.5.6 --coordinator-ip=10.5.5.5 and esrallyd start
--node-ip=10.5.5.7 --coordinator-ip=10.5.5.5 respectively. The --node-ip param-
eter tells Rally the IP of the machine on which it is running. As some machines have more than one network
interface, Rally will not attempt to auto-detect the machine IP. The --coordinator-ip parameter tells
Rally the IP of the benchmark coordinator node.

3. Start the benchmark by invoking Rally on the benchmark coordinator, for example: esrally
--pipeline=benchmark-only --load-driver-hosts=10.5.5.6,10.5.5.7
--target-hosts=10.5.5.11:9200,10.5.5.12:9200,10.5.5.13:9200.

22 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

4. After the benchmark has finished you can stop the Rally daemon again. On the benchmark coordinator and on
the load driver machines run esrallyd stop.

Note: Rally neither distributes code (i.e. custom runners or parameter sources) nor data automatically. You should
place all tracks and their data on all machines in the same directory before starting the benchmark. Alternatively, you
can store your track in a custom track repository.

Note: As indicated in the diagram, track data will be downloaded by each load driver machine separately. If
you want to avoid that, you can run a benchmark once without distributing the load test driver (i.e. do not spec-
ify --load-driver-hosts) and then copy the contents of ~/.rally/benchmarks/data to all load driver
machines.

2.6.4 Changing the default track repository

Rally supports multiple track repositories. This allows you for example to have a separate company-internal reposi-
tory for your own tracks that is separate from Rally’s default track repository. However, you always need to define
--track-repository=my-custom-repository which can be cumbersome. If you want to avoid that and
want Rally to use your own track repository by default you can just replace the default track repository definition in
~./rally/rally.ini. Consider this example:

...
[tracks]
default.url = git@github.com:elastic/rally-tracks.git
teamtrackrepo.url = git@example.org/myteam/my-tracks.git

If teamtrackrepo should be the default track repository, just define it as default.url. E.g.:

...
[tracks]
default.url = git@example.org/myteam/my-tracks.git
old-rally-default.url=git@github.com:elastic/rally-tracks.git

Also don’t forget to rename the folder of your local working copy as Rally will search for a track repository with the
name default:

cd ~/.rally/benchmarks/tracks/
mv default old-rally-default
mv teamtrackrepo default

From now on, Rally will treat your repository as default and you need to run Rally with
--track-repository=old-rally-default if you want to use the out-of-the-box Rally tracks.

2.7 Define Custom Workloads: Tracks

2.7.1 Definition

A track is a specification of one ore more benchmarking scenarios with a specific document corpus.

2.7. Define Custom Workloads: Tracks 23

https://github.com/elastic/rally-tracks

Rally Documentation, Release 0.8.0

Note: Please see the track reference for more information on the structure of a track.

2.7.2 Example track

Let’s create an example track step by step. We will call this track “tutorial”. The track consists of two components:
the data set and the actual track specification which describes the workload that Rally should apply. We will store
everything in the directory ~/rally-tracks/tutorial but you can choose any other location.

First, we need some data. Geonames provides geo data under a creative commons license. We will download allCoun-
tries.zip (around 300MB), extract it and inspect allCountries.txt.

You will note that the file is tab-delimited but we need JSON to bulk-index data with Elasticsearch. So we can use a
small script to do the conversion for us:

import json

cols = (("geonameid", "int"),
("name", "string"),
("asciiname", "string"),
("alternatenames", "string"),
("latitude", "double"),
("longitude", "double"),
("feature_class", "string"),
("feature_code", "string"),
("country_code", "string"),
("cc2", "string"),
("admin1_code", "string"),
("admin2_code", "string"),
("admin3_code", "string"),
("admin4_code", "string"),
("population", "long"),
("elevation", "int"),
("dem", "string"),
("timezone", "string"))

def main():
with open("allCountries.txt", "rt", encoding="UTF-8") as f:

for line in f:
tup = line.strip().split("\t")
record = {}
for i in range(len(cols)):

name, type = cols[i]
if tup[i] != "":

if type in ("int", "long"):
record[name] = int(tup[i])

elif type == "double":
record[name] = float(tup[i])

else:
record[name] = tup[i]

print(json.dumps(record, ensure_ascii=False))

if __name__ == "__main__":
main()

24 Chapter 2. Source Code

http://www.geonames.org/
http://creativecommons.org/licenses/by/3.0/
http://download.geonames.org/export/dump/allCountries.zip
http://download.geonames.org/export/dump/allCountries.zip

Rally Documentation, Release 0.8.0

Store the script as toJSON.py in our tutorial directory (~/rally-tracks/tutorial) and invoke the script
with python3 toJSON.py > documents.json.

We also need a mapping file for our documents. For details on how to write a mapping file, see the Elasticsearch
documentation on mappings and look at an example mapping file. Place the mapping file in the tutorial directory.

Finally, add a file called track.json right next to the mapping file:

{
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],
"challenges": [
{

"name": "index-and-query",
"default": true,
"index-settings": {

"index.number_of_replicas": 0
},
"schedule": [

{
"operation": {

"operation-type": "bulk",
"bulk-size": 5000

}
"warmup-time-period": 120,
"clients": 8

},
{
"operation": "force-merge",
"clients": 1

},
{
"operation": {

"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}

2.7. Define Custom Workloads: Tracks 25

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://github.com/elastic/rally-tracks/blob/master/geonames/mappings.json

Rally Documentation, Release 0.8.0

]
}

]
}

A few things to note:

• If you define multiple challenges, Rally will run the challenge where default is set to true. If you want to
run a different challenge, provide the command line option --challenge=YOUR_CHALLENGE_NAME.

• You can add as many queries as you want. We use the official Python Elasticsearch client to issue queries.

• The numbers below the types property are needed to verify integrity and provide progress reports.

Note: You can store any supporting scripts along with your track. However, you need to place them in a directory
starting with “_”, e.g. “_support”. Rally loads track plugins (see below) from any directory but will ignore directories
starting with “_”.

Note: We have defined a JSON schema for tracks which you can use to check how to define your track. You should
also check the tracks provided by Rally for inspiration.

When you invoke esrally list tracks --track-path=~/rally-tracks/tutorial, the new track
should now appear:

dm@io:~ $ esrally list tracks --track-path=~/rally-tracks/tutorial

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/
Available tracks:

Name Description Documents Compressed Size Uncompressed
→˓Size Default Challenge All Challenges
---------- ----------------------------- ----------- --------------- --------------
→˓--- ----------------- ---------------
tutorial Tutorial benchmark for Rally 8647880 N/A 2.6 GB
→˓ index-and-query index-and-query

Congratulations, you have created your first track! You can test it with esrally --track-path=~/
rally-tracks/tutorial and run specific challenges with esrally --track-path=~/
rally-tracks/tutorial --challenge=index-and-query.

2.7.3 Adding support for test mode

When you invoke Rally with --test-mode, it switches to a mode that allows you to check your track very quickly
for syntax errors. To achieve that, it will postprocess its internal track representation after loading it:

• Iteration-based tasks will run at most one warmup iteration and one measurement iteration.

• Time-period-based task will run for at most 10 seconds without any warmup.

26 Chapter 2. Source Code

http://elasticsearch-py.readthedocs.org/
https://github.com/elastic/rally/blob/master/esrally/resources/track-schema.json

Rally Documentation, Release 0.8.0

Rally will postprocess all data file names of a track. So instead of documents.json.bz2, Rally will attempt to
find documents-1k.json.bz2 and will assume it contains 1.000 documents. However, you need to prepare these
data files otherwise this test mode is not supported.

The preparation is very easy. Just pick 1.000 documents for every data file in your track. We choose the first 1.000 here
but it does not matter usually which part you choose: head -n 1000 documents.json > documents-1k.
json.

2.7.4 Structuring your track

track.json is just the entry point to a track but you can split your track as you see fit. Suppose you want to add
more challenges to the track above but you want to keep them in a separate files. Let’s start by storing our challenge
in a separate file, e.g in challenges/index-and-query.json. Create the directory and store the following in
index-and-query.json:

{
"name": "index-and-query",
"default": true,
"index-settings": {

"index.number_of_replicas": 0
},
"schedule": [

{
"operation": {
"operation-type": "bulk",
"bulk-size": 5000

}
"warmup-time-period": 120,
"clients": 8

},
{
"operation": "force-merge",
"clients": 1

},
{
"operation": {

"name": "query-match-all",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

Now modify track.json so it knows about your new file:

{
"description": "Tutorial benchmark for Rally",
"indices": [

2.7. Define Custom Workloads: Tracks 27

Rally Documentation, Release 0.8.0

{
"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],
"challenges": [
{% include "challenges/index-and-query.json" %}

]
}

We replaced the challenge content with {% include "challenges/index-and-query.json" %} which
tells Rally to include the challenge from the provided file. You can use include on arbitrary parts of your track.

If you want to reuse operation definitions across challenges, you can also define them in a separate operations
block and just refer to them by name in the corresponding challenge:

{
"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],
"operations": [
{

"name": "bulk-index",
"operation-type": "bulk",
"bulk-size": 5000

},
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "query-match-all",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

28 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

}
],
"challenges": [
{% include "challenges/index-and-query.json" %}

]
}

challenges/index-and-query.json then becomes:

{
"name": "index-and-query",
"default": true,
"index-settings": {

"index.number_of_replicas": 0
},
"schedule": [

{
"operation": "bulk-index",
"warmup-time-period": 120,
"clients": 8

},
{
"operation": "force-merge",
"clients": 1

},
{
"operation": "query-match-all",
"clients": 8,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}

Note how we reference to the operations by their name (i.e. bulk-index, force-merge and
query-match-all).

If your track consists of multiple challenges, it can be cumbersome to include them all explicitly. Therefore Rally
brings a collect helper that collects all related files for you. Let’s adapt our track to use it:

{% import "rally.helpers" as rally %}
{

"description": "Tutorial benchmark for Rally",
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json",
"document-count": 8647880,
"uncompressed-bytes": 2790927196

}
]

}
],

2.7. Define Custom Workloads: Tracks 29

Rally Documentation, Release 0.8.0

"operations": [
{

"name": "bulk-index",
"operation-type": "bulk",
"bulk-size": 5000

},
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "query-match-all",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

}
],
"challenges": [
{{ rally.collect(parts="challenges/*.json") }}

]
}

We changed two things here. First, we imported helper functions from Rally by adding {% import "rally.
helpers" as rally %} in line 1. Second, we used Rally’s collect helper to find and include all JSON files
in the “challenges” subdirectory with the statement {{ rally.collect(parts="challenges/*.json")
}}. When you add new challenges in this directory, Rally will automatically pick them up.

Note: If you want to check the final result, please check Rally’s log file. Rally will print the fully rendered track there
after it has loaded it successfully.

You can even use Jinja2 variables but you need to import the Rally helpers a bit differently then. You also need to
declare all variables before the import statement:

{% set clients = 16 %}
{% import "rally.helpers" as rally with context %}

If you use this idiom you can then refer to variables inside your snippets with {{ clients }}.

2.7.5 Sharing your track with others

At the moment your track is only available on your local machine but maybe you want to share it with other people in
your team. You can share the track itself in any way you want, e.g. you can check it into version control. However,
you will most likely not want to commit the potentially huge data file. Therefore, you can expose the data via http (e.g.
via S3) and Rally can download it from there. To make this work, you need to add an additional property data-url
at the top-level of your track.json file which contains the URL from where to download your documents. Rally
expects that the URL points to the parent path and will append the document file name automatically.

It is also recommended that you compress your document corpus to save network bandwidth. We recommend to use
bzip2 compression. You can create a compressed archive with the following command:

bzip2 -9 -c documents.json > documents.json.bz2

30 Chapter 2. Source Code

http://jinja.pocoo.org/docs/2.9/templates/#assignments

Rally Documentation, Release 0.8.0

If you want to support the test mode, don’t forget to also compress your test mode corpus with:

bzip2 -9 -c documents-1k.json > documents-1k.json.bz2

Then upload documents.json.bz2 and documents-1k.json.bz2 to the remote location.

Finally, specify the compressed file name in your track.json file:

{
"description": "Tutorial benchmark for Rally",
"data-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames",
"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json.bz2",
"document-count": 8647880,
"compressed-bytes": 197857614,
"uncompressed-bytes": 2790927196

}
]

}
],
...

}

Specifying compressed-bytes (file size of documents.json.bz2) and uncompressed-bytes (file size
of documents.json) is optional but helps Rally to provide progress indicators and also verify integrity.

You’ve now mastered the basics of track development for Rally. It’s time to pat yourself on the back before you dive
into the advanced topics!

2.7.6 Advanced topics

Template Language

Rally uses Jinja2 as template language. This allows you to use Jinja2 expressions in track files.

Extension Points

Rally also provides a few extension points to Jinja2:

• now: This is a global variable that represents the current date and time when the template is evaluated by Rally.

• days_ago(): This is a filter that you can use for date calculations.

You can find an example in the logging track:

{
"name": "range",
"index": "logs-*",
"type": "type",
"body": {

"query": {

2.7. Define Custom Workloads: Tracks 31

http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/templates/#filters

Rally Documentation, Release 0.8.0

"range": {
"@timestamp": {
"gte": "now-{{'15-05-1998' | days_ago(now)}}d/d",
"lt": "now/d"

}
}

}
}

}
}

The data set that is used in the logging track starts on 26-04-1998 but we want to ignore the first few days for this query,
so we start on 15-05-1998. The expression {{'15-05-1998' | days_ago(now)}} yields the difference in
days between now and the fixed start date and allows us to benchmark time range queries relative to now with a
predetermined data set.

Custom parameter sources

Note: This is a rather new feature and the API may change! However, the effort to use custom parameter sources is
very low.

Warning: Your parameter source is on a performance-critical code-path so please double-check with Rally’s
profiling support that you did not introduce any bottlenecks.

Consider the following operation definition:

{
"name": "term",
"operation-type": "search",
"body": {
"query": {

"term": {
"body": "physician"

}
}

}
}

This query is defined statically in the track specification but sometimes you may want to vary parameters, e.g. search
also for “mechanic” or “nurse”. In this case, you can write your own “parameter source” with a little bit of Python
code.

First, define the name of your parameter source in the operation definition:

{
"name": "term",
"operation-type": "search",
"param-source": "my-custom-term-param-source"
"professions": ["mechanic", "physician", "nurse"]

}

Rally will recognize the parameter source and looks then for a file track.py in the same directory as the corre-
sponding JSON file. This file contains the implementation of the parameter source:

32 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

import random

def random_profession(indices, params):
you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(params["professions"])

}
}

},
"index": None,
"type": None,
"use_request_cache": False

}

def register(registry):
registry.register_param_source("my-custom-term-param-source", random_profession)

The example above shows a simple case that is sufficient if the operation to which your parameter source is applied is
idempotent and it does not matter whether two clients execute the same operation.

The function random_profession is the actual parameter source. Rally will bind the name “my-custom-term-
param-source” to this function by calling register. register is called by Rally before the track is executed.

The parameter source function needs to declare the two parameters indices and params. indices contains all
indices of this track and params contains all parameters that have been defined in the operation definition in track.
json. We use it in the example to read the professions to choose.

If you need more control, you need to implement a class. The example above, implemented as a class looks as follows:

import random

class TermParamSource:
def __init__(self, indices, params):

self._indices = indices
self._params = params

def partition(self, partition_index, total_partitions):
return self

def size(self):
return 1

def params(self):
you must provide all parameters that the runner expects
return {

"body": {
"query": {

"term": {
"body": "%s" % random.choice(self._params["professions"])

}
}

},
"index": None,
"type": None,

2.7. Define Custom Workloads: Tracks 33

Rally Documentation, Release 0.8.0

"use_request_cache": False
}

def register(registry):
registry.register_param_source("my-custom-term-param-source", TermParamSource)

Let’s walk through this code step by step:

• Note the method register where you need to bind the name in the track specification to your parameter
source implementation class similar to the simple example.

• The class TermParamSource is the actual parameter source and needs to fulfill a few requirements:

– It needs to have a constructor with the signature __init__(self, indices, params). You don’t
need to store these parameters if you don’t need them.

– partition(self, partition_index, total_partitions) is called by Rally to “assign”
the parameter source across multiple clients. Typically you can just return self but in certain cases you
need to do something more sophisticated. If each clients needs to act differently then you can provide
different parameter source instances here.

– size(self): This method is needed to help Rally provide a proper progress indication to users if you
use a warmup time period. For bulk indexing, this would return the number of bulks (for a given client).
As searches are typically executed with a pre-determined amount of iterations, just return 1 in this case.

– params(self): This method needs to return a dictionary with all parameters that the corresponding
“runner” expects. For the standard case, Rally provides most of these parameters as a convenience, but
here you need to define all of them yourself. This method will be invoked once for every iteration during
the race. We can see that we randomly select a profession from a list which will be then be executed by
the corresponding runner.

Note: Be aware that params(self) is called on a performance-critical path so don’t do anything in this method
that takes a lot of time (avoid any I/O). For searches, you should usually throttle throughput anyway and there it does
not matter that much but if the corresponding operation is run without throughput throttling, please double-check that
you did not introduce a bottleneck in the load test driver with your custom parameter source.

In the implementation of custom parameter sources you can access the Python standard API. Using any additional
libraries is not supported.

You can also implement your parameter sources and runners in multiple Python files but the main entry point is always
track.py. The root package name of your plugin is the name of your track.

Custom runners

Warning: Your runner is on a performance-critical code-path so please double-check with Rally’s profiling
support that you did not introduce any bottlenecks.

You cannot only define custom parameter sources but also custom runners. Runners execute an operation against
Elasticsearch. Out of the box, Rally supports the following operations:

• Bulk indexing

• Force merge

34 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

• Searches

• Index stats

• Nodes stats

If you want to use any other operation, you can define a custom runner. Consider, we want to use the percolate API
with an older version of Elasticsearch (note that it has been replaced by the percolate query in Elasticsearch 5.0). To
achieve this, we c

In track.json specify an operation with type “percolate” (you can choose this name freely):

{
"name": "percolator_with_content_google",
"operation-type": "percolate",
"body": {
"doc": {

"body": "google"
},
"track_scores": true

}
}

Then create a file track.py next to track.json and implement the following two functions:

def percolate(es, params):
es.percolate(

index="queries",
doc_type="content",
body=params["body"]

)

def register(registry):
registry.register_runner("percolate", percolate)

The function percolate is the actual runner and takes the following parameters:

• es, which is the Elasticsearch Python client

• params which is a dict of parameters provided by its corresponding parameter source. Treat this parameter as
read only and do not attempt to write to it.

This function can return either:

• Nothing at all. Then Rally will assume that by default 1 and "ops" (see below)

• A tuple of weight and a unit, which is usually 1 and "ops". If you run a bulk operation you might return
the bulk size here, for example in number of documents or in MB. Then you’d return for example (5000,
"docs") Rally will use these values to store throughput metrics.

• A dict with arbitrary keys. If the dict contains the key weight it is assumed to be numeric and chosen as
weight as defined above. The key unit is treated similarly. All other keys are added to the meta section of the
corresponding service time and latency metrics records.

Similar to a parameter source you also need to bind the name of your operation type to the function within register.

If you need more control, you can also implement a runner class. The example above, implemented as a class looks as
follows:

class PercolateRunner:
def __enter__(self):

2.7. Define Custom Workloads: Tracks 35

Rally Documentation, Release 0.8.0

return self

def __call__(self, es, params):
es.percolate(

index="queries",
doc_type="content",
body=params["body"]

)

def __repr__(self, *args, **kwargs):
return "percolate"

def register(registry):
registry.register_runner("percolate", PercolateRunner())

The actual runner is implemented in the method __call__ and the same return value conventions apply as for
functions. For debugging purposes you should also implement __repr__ and provide a human-readable name for
your runner. Finally, you need to register your runner in the register function. Runners also support Python’s
context manager interface. Rally uses a new context for each request. Implementing the context manager interface can
be handy for cleanup of resources after executing an operation. Rally uses it for example to clear open scrolls.

Note: You need to implement register just once and register all parameter sources and runners there.

Custom schedulers

Warning: Your scheduler is on a performance-critical code-path so please double-check with Rally’s profiling
support that you did not introduce any bottlenecks.

If you want to rate-limit execution of tasks, you can specify a target-throughput (in operations per second).
For example, Rally will attempt to run this term query 20 times per second:

{
"operation": "term",
"target-throughput": 20

}

By default, Rally will use a deterministic distribution to determine when to schedule the next operation. This means,
that it will execute the term query at 0, 50ms, 100ms, 150ms and so on. Note that the scheduler is aware of the number
of clients. Consider this example:

{
"operation": "term",
"target-throughput": 20,
"clients": 4

}

If Rally would not take the number of clients into account and would still issue requests (from each of the four clients)
at the same points in time (i.e. 0, 50ms, 100ms, 150ms, ...), it would run at a target throughput of 4 * 20 = 80 operations
per second. Hence, Rally will automatically reduce the rate at which each client will execute requests. Each client will
issue requests at 0, 200ms, 400ms, 600ms, 800ms, 1000ms and so on. Each client issues five requests per second but
as there are four of them, we still have a target throughput of 20 operations per second. You should keep this in mind,
when writing your own custom schedules.

36 Chapter 2. Source Code

https://docs.python.org/3/library/stdtypes.html#typecontextmanager
https://en.wikipedia.org/wiki/Degenerate_distribution

Rally Documentation, Release 0.8.0

If you want to create a custom scheduler, create a file track.py next to track.json and implement the following
two functions:

import random

def random_schedule(current):
return current + random.randint(10, 900) / 1000.0

def register(registry):
registry.register_scheduler("my_random", random_schedule)

You can then use your custom scheduler as follows:

{
"operation": "term",
"schedule": "my_random"

}

The function random_schedule returns a floating point number which represents the next point in time when Rally
should execute the given operation. This point in time is measured in seconds relative to the beginning of the execution
of this task. The parameter current is the last return value of your function and is 0 for the first invocation. So,
for example, this scheduler could return the following series: 0, 0.119, 0.622, 1.29, 1.343, 1.984, 2.233. Note that
this implementation is usually not sufficient as it does not take into account the number of clients. Therefore, you
will typically want to implement a full-blown scheduler which can also take parameters. Below is an example for our
random scheduler:

import random

class RandomScheduler:
def __init__(self, params):

assume one client by default
clients = self.params.get("clients", 1)
scale accordingly with the number of clients!
self.lower_bound = clients * self.params.get("lower-bound-millis", 10)
self.upper_bound = clients * self.params.get("upper-bound-millis", 900)

def next(self, current):
return current + random.randint(self.lower_bound, self.upper_bound) / 1000.0

def register(registry):
registry.register_scheduler("my_random", RandomScheduler)

This implementation will now achieve the same rate independent of the number of clients. Additionally, we can pass
the lower and upper bound for the random function from our track:

{
"operation": "term",
"schedule": "my_random",
"clients": 4,
"lower-bound-millis": 50,
"upper-bound-millis": 250

}

2.7. Define Custom Workloads: Tracks 37

Rally Documentation, Release 0.8.0

2.8 Developing Rally

2.8.1 Prerequisites

Please ensure that the following packages are installed before installing Rally in development mode:

• Python 3.4 or better available as python3 on the path (verify with: python3 --version)

• pip3 available on the path (verify with pip3 --version)

• JDK 8 or 9

• git 1.9 or better

• Gradle 3.3 or better

Please check the installation guide for detailed installation instructions for these packages.

Rally does not support Windows and is only actively tested on MacOS and Linux.

2.8.2 Installation Instructions for Development

git clone https://github.com/elastic/rally.git
cd rally
./rally

If you get errors during installation, it is probably due to the installation of psutil which we use to gather system
metrics like CPU utilization. Please check the installation instructions of psutil in this case. Keep in mind that Rally
is based on Python 3 and you need to install the Python 3 header files instead of the Python 2 header files on Linux.

Automatic Updates

Rally has a built-in auto-update feature when you install it from sources. By default, it will up-
date from the remote named origin. If you want to auto-update from a different remote, provide
--update-from-remote=YOUR_REMOTE_NAME as first parameter.

To work conveniently with Rally, we suggest that you add the Rally project directory to your PATH. In case you use a
different remote, you should also define aliases in your shell’s config file, e.g.:

alias rally='rally --update-from-remote=elastic '
alias rallyd='rallyd --update-from-remote=elastic '

Then you can invoke Rally or the Rally daemon as usual and have auto-update still work.

Also note that automatic updates are disabled in the following cases:

• There are local (uncommitted) changes in the Rally project directory

• A different branch than master is checked out

• You have specified --skip-update as the first command line parameter

• You have specified --offline as a command line parameter for Rally

38 Chapter 2. Source Code

https://github.com/giampaolo/psutil/blob/master/INSTALL.rst

Rally Documentation, Release 0.8.0

Configuring Rally

Before we can run our first benchmark, we have to configure Rally. Just invoke ./rally configure and Rally
will automatically detect that its configuration file is missing and prompt you for some values and write them to
~/.rally/rally.ini. After you’ve configured Rally, it will exit.

For more information see configuration help page.

2.8.3 Key Components of Rally

To get a rough understanding of Rally, it makes sense to get to know its key components:

• Race Control: is responsible for proper execution of the race. It sets up all components and acts as a high-level
controller.

• Mechanic: can build and prepare a benchmark candidate for the race. It checks out the source, builds Elastic-
search, provisions and starts the cluster.

• Track: is a concrete benchmarking scenario, e.g. the logging benchmark. It defines the data set to use.

• Challenge: is the specification on what benchmarks should be run and its configuration (e.g. index, then run a
search benchmark with 1000 iterations)

• Car: is a concrete system configuration for a benchmark, e.g. an Elasticsearch single-node cluster with default
settings.

• Driver: drives the race, i.e. it is executing the benchmark according to the track specification.

• Reporter: A reporter tells us how the race went (currently only after the fact).

There is a dedicated tutorial on how to add new tracks to Rally.

2.8.4 How to contribute code

First of all, please read the contributors guide.

We strive to be PEP-8 compliant but don’t follow it to the letter.

2.9 Command Line Reference

You can control Rally with subcommands and command line flags:

• Subcommands determine which task Rally performs.

• Command line flags are used to change Rally’s behavior but not all command line flags can be used for each sub-
command. To find out which command line flags are supported by a specific subcommand, just run esrally
<<subcommand>> --help.

2.9.1 Subcommands

race

The race subcommand is used to actually run a benchmark. It is the default one and chosen implicitly if none is
given.

2.9. Command Line Reference 39

https://github.com/elastic/rally/blob/master/CONTRIBUTING.md

Rally Documentation, Release 0.8.0

list

The list subcommand is used to list different configuration options:

• telemetry: Will show all telemetry devices that are supported by Rally.

• tracks: Will show all tracks that are supported by Rally. As this may depend on the Elastic-
search version that you want to benchmark, you can specify --distribution-version and also
--distribution-repository as additional options.

• pipelines: Will show all pipelines that are supported by Rally.

• races: Will show a list of the most recent races. This is needed for the tournament mode.

• cars: Will show all cars that are supported by Rally (i.e. Elasticsearch configurations).

• elasticsearch-plugins: Will show all Elasticsearch plugins and their configurations that are supported by Rally.

To list a specific configuration option, place it after the list subcommand. For example, esrally list
pipelines will list all pipelines known to Rally.

compare

This subcommand is needed for tournament mode and its usage is described there.

configure

This subcommand is needed to configure Rally. It is implicitly chosen if you start Rally for the first time but you can
rerun this command at any time.

2.9.2 Command Line Flags

track-path

Can be either a directory that contains a track.json file or a .json file with an arbitrary name that contains a track
specification. --track-path and --track-repository as well as --track are mutually exclusive. See the
track reference to decide whether you should use --track-path or --track-repository / --track.

Examples:

provide a directory - Rally searches for a track.json file in this directory
Track name is "app-logs"
esrally --track-path=~/Projects/tracks/app-logs
provide a file name - Rally uses this file directly
Track name is "syslog"
esrally --track-path=~/Projects/tracks/syslog.json

track-repository

Selects the track repository that Rally should use to resolve tracks. By default the default track repository is used,
which is available in the Github project rally-tracks. See the track reference on how to add your own track repositories.
--track-path and --track-repository as well as --track are mutually exclusive.

40 Chapter 2. Source Code

https://github.com/elastic/rally-tracks

Rally Documentation, Release 0.8.0

track

Selects the track that Rally should run. By default the geonames track is run. For more details on how tracks work,
see adding tracks or the track reference. --track-path and --track-repository as well as --track are
mutually exclusive.

track-params

With this parameter you can inject variables into tracks. The supported variables depend on the track and you should
check the track JSON file to see which variables can be provided.

It accepts a list of comma-separated key-value pairs. The key-value pairs have to be delimited by a colon.

Examples:

Consider the following track snippet showing a single challenge:

{
"name": "index-only",
"index-settings": {
"index.number_of_replicas": {{ replica_count|default(0) }},
"index.number_of_shards": {{ shard_count|default(5) }},

},
"schedule": [
{

"operation": "bulk-index",
"warmup-time-period": 120,
"clients": 8

}
]

}

Rally tracks can use the Jinja templating language and the construct {{ some_variable|default(0) }} that
you can see above is a feature of Jinja to define default values for variables.

We can see that it defines two variables:

• replica_count with a default value of 0

• shard_count with a default value of 5

When we run this track, we can override these defaults:

• --track-params="replica_count:1,shard_count:3" will set the number of replicas to 1 and
the number of shards to 3.

• --track-params="replica_count:1"will just set the number of replicas to 1 and just keep the default
value of 5 shards.

All track parameters are recorded for each metrics record in the metrics store. Also, when you run esrally list
races, it will show all track parameters:

Race Timestamp Track Track Parameters Challenge Car
→˓ User Tag
---------------- ------- ------------------------------ ------------------- -------
→˓- ---------
20160518T122341Z pmc replica_count=1 append-no-conflicts
→˓defaults
20160518T112341Z pmc replica_count=1,shard_count=3 append-no-conflicts
→˓defaults

2.9. Command Line Reference 41

http://jinja.pocoo.org/docs/2.10/templates/#default

Rally Documentation, Release 0.8.0

Note that the default values are not recorded or shown (Rally does not know about them).

challenge

A track consists of one or more challenges. With this flag you can specify which challenge should be run. If you don’t
specify a challenge, Rally derives the default challenge itself. To see the default challenge of a track, run esrally
list tracks.

include-tasks

Each challenge consists of one or more tasks but sometimes you are only interested to run a subset of all tasks. For
example, you might have prepared an index already and want only to repeatedly run search benchmarks. Or you want
to run only the indexing task but nothing else.

You can use --include-tasks to specify a comma-separated list of tasks that you want to run. Each item in
the list defines either the name of a task or the operation type of a task. Only the tasks that match will be executed.
Currently there is also no command that lists the tasks of a challenge so you need to look at the track source.

Examples:

• Execute only the tasks with the name index and term: --include-tasks="index,term"

• Execute only tasks of type search: --include-tasks="type:search"

• You can also mix and match: --include-tasks="index,type:search"

team-repository

Selects the team repository that Rally should use to resolve cars. By default the default team repository is used,
which is available in the Github project rally-teams. See the documentation about cars on how to add your own team
repositories.

car

A car defines the Elasticsearch configuration that will be used for the benchmark. To see a list of possible cars, issue
esrally list cars. You can specify one or multiple comma-separated values, for details please refer to the
documentation about cars.

Example

esrally --car="4gheap,ea"

Rally will configure Elasticsearch with 4GB of heap (4gheap) and enable Java assertions (ea).

elasticsearch-plugins

A comma-separated list of Elasticsearch plugins to install for the benchmark. If a plugin supports multiple configura-
tions you need to specify the configuration after the plugin name. To see a list of possible plugins and configurations,
issue esrally list elasticsearch-plugins.

Example:

esrally --elasticsearch-plugins="analysis-icu,xpack:security"

42 Chapter 2. Source Code

https://github.com/elastic/rally-teams

Rally Documentation, Release 0.8.0

In this example, Rally will install the analysis-icu plugin and the x-pack plugin with the security configu-
ration. See the reference documentation about Elasticsearch plugins for more details.

pipeline

Selects the pipeline that Rally should run.

Rally can autodetect the pipeline in most cases. If you specify --distribution-version it will auto-select the
pipeline from-distribution otherwise it will use from-sources-complete.

laps

Allows to run the benchmark for multiple laps (defaults to 1 lap). Each lap corresponds to one full execution of a track
but note that the benchmark candidate is not restarted in between.

enable-driver-profiling

This option enables a profiler on all tasks that the load test driver performs. It is intended to help track authors
spot accidental bottlenecks, especially if they implement their own runners or parameter sources. When this mode is
enabled, Rally will enable a profiler in the load driver module. After each task and for each client, Rally will add the
profile information to a dedicated profile log file. For example:

2017-02-09 08:23:24,35 rally.profile INFO
=== Profile START for client [0] and task [index-append-1000] ===

16052402 function calls (15794402 primitive calls) in 180.221 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
130 0.001 0.000 168.089 1.293 /Users/dm/Projects/rally/esrally/driver/

→˓driver.py:908(time_period_based)
129 0.260 0.002 168.088 1.303 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/bulk_source.py:79(params)
129000 0.750 0.000 167.791 0.001 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:142(generate_event)
516000 0.387 0.000 160.485 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/weightedarray.py:20(get_random)
516000 6.199 0.000 160.098 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/weightedarray.py:23(__random_index)
516000 1.292 0.000 152.289 0.000 /usr/local/Cellar/python3/3.6.0/

→˓Frameworks/Python.framework/Versions/3.6/lib/python3.6/random.py:96(seed)
516000 150.783 0.000 150.783 0.000 {function Random.seed at 0x10b7fa2f0}
129000 0.363 0.000 45.686 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:48(add_fields)
129000 0.181 0.000 41.742 0.000 /Users/dm/.rally/benchmarks/tracks/

→˓develop/bottleneck/parameter_sources/randomevent.py:79(add_fields)
....

=== Profile END for client [0] and task [index-append-1000] ===

In this example we can spot quickly that Random.seed is called excessively, causing an accidental bottleneck in the
load test driver.

2.9. Command Line Reference 43

Rally Documentation, Release 0.8.0

test-mode

Allows you to test a track without running it for the whole duration. This mode is only intended for quick sanity
checks when creating a track. Please don’t rely on these numbers at all (they are meaningless).

If you write your own track, please keep in mind that you need prepare your track to support this mode.

telemetry

Activates the provided telemetry devices for this race.

Example

esrally --telemetry=jfr,jit

This activates Java flight recorder and the JIT compiler telemetry devices.

revision

If you actively develop Elasticsearch and want to benchmark a source build of Elasticsearch (which will Rally create
for you), you can specify the git revision of Elasticsearch that you want to benchmark. But note that Rally does only
support Gradle as build tool which effectively means that it will only support this for Elasticsearch 5.0 or better. The
default value is current.

You can specify the revision in different formats:

• --revision=latest: Use the HEAD revision from origin/master.

• --revision=current: Use the current revision (i.e. don’t alter the local source tree).

• --revision=abc123: Where abc123 is some git revision hash.

• --revision=@2013-07-27T10:37:00Z: Determines the revision that is closest to the provided date.
Rally logs to which git revision hash the date has been resolved and if you use Elasticsearch as metrics store
(instead of the default in-memory one), each metric record will contain the git revision hash also in the meta-
data section.

Supported date format: If you specify a date, it has to be ISO-8601 conformant and must start with an @ sign to make
it easier for Rally to determine that you actually mean a date.

If you want to create source builds of Elasticsearch plugins, you need to specify the revision for Elasticsearch and
all relevant plugins separately. Revisions for Elasticsearch and each plugin need to be comma-separated (,). Each
revision is prefixed either by elasticsearch or by the plugin name and separated by a colon (:). As core plugins
are contained in the Elasticsearch repo, there is no need to specify a revision for them (the revision would even be
ignored in fact).

Examples:

• Build latest Elasticsearch and plugin “my-plugin”: --revision="elasticsearch:latest,
my-plugin:latest"

• Build Elasticsearch tag v5.6.1 and revision abc123 of plugin “my-plugin”:
--revision="elasticsearch:v5.6.1,my-plugin:abc123"

Note that it is still required to provide the parameter --elasticsearch-plugins. Specifying a plugin with
--revision just tells Rally which revision to use for building the artifact. See the documentation on Elasticsearch
plugins for more details.

44 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

distribution-version

If you want to benchmark a binary distribution, you can specify the version here.

Example

esrally --distribution-version=2.3.3

Rally will then benchmark the official Elasticsearch 2.3.3 distribution.

Rally works with all releases of Elasticsearch that are supported by Elastic.

The following versions are already end-of-life:

• 0.x: Rally is not tested, and not expected to work for this version; we will make no effort to make Rally work.

• 1.x: Rally works on a best-effort basis with this version but support may be removed at any time.

Additionally, Rally will always work with the current development version of Elasticsearch (by using either a snapshot
repository or by building Elasticsearch from sources).

distribution-repository

Rally does not only support benchmarking official distributions but can also benchmark snapshot builds. This is
option is really just intended for our benchmarks that are run in continuous integration but if you want to, you can
use it too. The only supported value out of the box is release (default) but you can define arbitrary repositories in
~/.rally/rally.ini.

Example

Say, you have an in-house repository where Elasticsearch snapshot builds get published. Then you can add the follow-
ing in the distributions section of your Rally config file:

in_house_snapshot.url = https://www.example.org/snapshots/elasticsearch/elasticsearch-
→˓{{VERSION}}.tar.gz
in_house_snapshot.cache = false

The url property defines the URL pattern for this repository. The cache property defines whether Rally should al-
ways download a new archive (cache=false) or just reuse a previously downloaded version (cache=true). Rally
will replace the {{VERSION}} placeholder of in the url property with the value of distribution-version
provided by the user on the command line.

You can use this distribution repository with the name “in_house_snapshot” as follows:

esrally --distribution-repository=in_house_snapshot --distribution-version=7.0.0-
→˓SNAPSHOT

This will benchmark the latest 7.0.0 snapshot build of Elasticsearch.

report-format

The command line reporter in Rally displays a table with key metrics after a race. With this option you can specify
whether this table should be in markdown format (default) or csv.

2.9. Command Line Reference 45

https://www.elastic.co/support/matrix#show_compatibility
https://elasticsearch-benchmarks.elastic.co/

Rally Documentation, Release 0.8.0

show-in-report

By default, the command line reporter will only show values that are available (available). With all you can
force it to show a line for every value, even undefined ones, and with all-percentiles it will show only available
values but force output of all possible percentile values.

This command line parameter is not available for comparing races.

report-file

By default, the command line reporter will print the results only on standard output, but can also write it to a file.

Example

esrally --report-format=csv --report-file=~/benchmarks/result.csv

client-options

With this option you can customize Rally’s internal Elasticsearch client.

It accepts a list of comma-separated key-value pairs. The key-value pairs have to be delimited by a colon. These
options are passed directly to the Elasticsearch Python client API. See their documentation on a list of supported
options.

We support the following data types:

• Strings: Have to be enclosed in single quotes. Example: ca_certs:'/path/to/CA_certs'

• Numbers: There is nothing special about numbers. Example: sniffer_timeout:60

• Booleans: Specify either true or false. Example: use_ssl:true

In addition to the options, supported by the Elasticsearch client, it is also possible to enable HTTP compression by
specifying compressed:true

Default value: timeout:60

Warning: If you provide your own client options, the default value will not be magically merged. You have to
specify all client options explicitly. The only exceptions to this rule is ca_cert (see below).

Examples

Here are a few common examples:

• Enable HTTP compression: --client-options="compressed:true"

• Enable SSL (e.g. if you have X-Pack Security installed): --client-options="use_ssl:true,
verify_certs:true". Note that you don’t need to set ca_cert (which defines the path to the root
certificates). Rally does this automatically for you.

• Enable SSL with a client key and certificate: --client-options="use_ssl:true,
verify_certs:true,ca_certs:'/path/to/cacert.pem',client_cert:'/path/to/
client_cert.pem',client_key='/path/to/client_key.pem" (see also the Elasticsearch
Python client docs)

• Enable basic authentication: --client-options="basic_auth_user:'user',
basic_auth_password:'password'". Please avoid the characters ', , and : in user name and

46 Chapter 2. Source Code

http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch
http://elasticsearch-py.readthedocs.io/en/master/index.html#ssl-and-authentication
http://elasticsearch-py.readthedocs.io/en/master/index.html#ssl-and-authentication

Rally Documentation, Release 0.8.0

password as Rally’s parsing of these options is currently really simple and there is no possibility to escape
characters.

on-error

This option controls whether Rally will continue or abort when a request error occurs. By default, Rally will just
record errors and report the error rate at the end of a race. With --on-error=abort, Rally will immediately abort
the race on the first error and print a detailed error message.

load-driver-hosts

By default, Rally will run its load driver on the same machine where you start the benchmark. However, if you
benchmark larger clusters, one machine may not be enough to generate sufficient load. Hence, you can specify a
comma-separated list of hosts which should be used to generate load with --load-driver-hosts.

Example

esrally --load-driver-hosts=10.17.20.5,10.17.20.6

In the example, above Rally will generate load from the hosts 10.17.20.5 and 10.17.20.6. For this to work,
you need to start a Rally daemon on these machines, see distributing the load test driver for a complete example.

target-hosts

If you run the benchmark-only pipeline or you want Rally to benchmark a remote cluster, then you can specify a
comma-delimited list of hosts:port pairs to which Rally should connect. The default value is 127.0.0.1:9200.

Example

esrally --pipeline=benchmark-only --target-hosts=10.17.0.5:9200,10.17.0.
→˓6:9200

This will run the benchmark against the hosts 10.17.0.5 and 10.17.0.6 on port 9200. See client-options if you
use X-Pack Security and need to authenticate or Rally should use https.

quiet

Suppresses some output on the command line.

offline

Tells Rally that it should assume it has no connection to the Internet when checking for track data. The default value
is false. Note that Rally will only assume this for tracks but not for anything else, e.g. it will still try to download
Elasticsearch distributions that are not locally cached or fetch the Elasticsearch source tree.

preserve-install

Rally usually installs and launches an Elasticsearch cluster internally and wipes the entire directory after the benchmark
is done. Sometimes you want to keep this cluster including all data after the benchmark has finished and that’s what
you can do with this flag. Note that depending on the track that has been run, the cluster can eat up a very significant

2.9. Command Line Reference 47

Rally Documentation, Release 0.8.0

amount of disk space (at least dozens of GB). The default value is configurable in the advanced configuration but
usually false.

Note: This option does only affect clusters that are provisioned by Rally. More specifically, if you use the pipeline
benchmark-only, this option is ineffective as Rally does not provision a cluster in this case.

cluster-health

Warning: This option is deprecated and will be removed in a future version of Rally. For details, please see the
respective Github ticket #364.

Rally checks whether the cluster health is “green” before it runs a benchmark against it. The main reason is that we
don’t want to benchmark a cluster which is shuffling shards around or might start doing so. If you really need to run
a benchmark against a cluster that is “yellow” or “red”, then you can explicitly override Rally’s default behavior. It is
even possible to skip this check entirely by providing --cluster-health=skip. But please think twice before
doing so and rather eliminate the root cause.

Example

esrally --cluster-health=yellow

advanced-config

This flag determines whether Rally should present additional (advanced) configuration options. The default value is
false.

Example

esrally configure --advanced-config

assume-defaults

This flag determines whether Rally should automatically accept all values for configuration options that provide a
default. This is mainly intended to configure Rally automatically in CI runs. The default value is false.

Example

esrally configure --assume-defaults=true

user-tag

This is only relevant when you want to run tournaments. You can use this flag to attach an arbitrary text to the meta-
data of each metric record and also the corresponding race. This will help you to recognize a race when you run
esrally list races as you don’t need to remember the concrete timestamp on which a race has been run but
can instead use your own descriptive names.

The required format is key ”:” value. You can choose key and value freely.

Example

48 Chapter 2. Source Code

https://github.com/elastic/rally/issues/364

Rally Documentation, Release 0.8.0

esrally --user-tag="intention:github-issue-1234-baseline,gc:cms"

You can also specify multiple tags. They need to be separated by a comma.

Example

esrally --user-tag="disk:SSD,data_node_count:4"

When you run esrally list races, this will show up again:

Race Timestamp Track Track Parameters Challenge Car User Tag
---------------- ------- ------------------ ------------------- -------- ---------
→˓---------------------------
20160518T122341Z pmc append-no-conflicts defaults
→˓intention:github-issue-1234-baseline
20160518T112341Z pmc append-no-conflicts defaults disk:SSD,
→˓data_node_count:4

This will help you recognize a specific race when running esrally compare.

2.10 Offline Usage

In some corporate environments servers do not have Internet access. You can still use Rally in such environments and
this page summarizes all information that you need to get started.

2.10.1 Installation and Configuration

We provide a special offline installation package. Please refer to the offline installation guide for detailed instructions.
After the installation you can just follow the normal configuration procedure.

2.10.2 Command Line Usage

Rally will automatically detect upon startup that no Internet connection is available and print the following warning:

[WARNING] No Internet connection detected. Automatic download of track data sets etc.
→˓is disabled.

It detects this by trying to connect to github.com. If you want to disable this probing you can explicitly specify
--offline.

2.10.3 Using tracks

A Rally track describes a benchmarking scenario. You can either write your own tracks or use the tracks that Rally
provides out of the box. In the former case, Rally will work just fine in an offline environment. In the latter case,
Rally would normally download the track and its associated data from the Internet. If you want to use one of Rally’s
standard tracks in offline mode, you need to download all relevant files first on a machine that has Internet access and
copy it to the target machine(s).

Use the download script to download all data for a track on a machine that has access to the Internet. Example:

2.10. Offline Usage 49

https://raw.githubusercontent.com/elastic/rally-tracks/master/download.sh

Rally Documentation, Release 0.8.0

downloads the script from Github
curl -O https://raw.githubusercontent.com/elastic/rally-tracks/master/download.sh
chmod u+x download.sh
download all data for the geonames track
./download.sh geonames

This will download all data for the geonames track and create a tar file rally-track-data-geonames.tar in
the current directory. Copy this file to the home directory of the user which will execute Rally on the target machine
(e.g. /home/rally-user).

On the target machine, run:

cd ~
tar -xf rally-track-data-geonames.tar

The download script does not require a Rally installation on the machine with Internet access but assumes that git
and curl are available.

After you’ve copied the data, you can list the available tracks with esrally list tracks. If a track shows up in
this list, it just means that the track description is available locally but not necessarily all data files.

2.10.4 Using cars

Note: You can skip this section if you use Rally only as a load generator.

If you have Rally configure and start Elasticsearch then you also need the out-of-the-box configurations available. Run
the following command on a machine with Internet access:

git clone https://github.com/elastic/rally-teams.git ~/.rally/benchmarks/teams/default
tar -C ~ -czf rally-teams.tar.gz .rally/benchmarks/teams/default

Copy that file to the target machine(s) and run on the target machine:

cd ~
tar -xzf rally-teams.tar.gz

After you’ve copied the data, you can list the available tracks with esrally list cars.

2.11 Track Reference

2.11.1 Definition

A track is a specification of one ore more benchmarking scenarios with a specific document corpus. It defines for
example the involved indices, data files and the operations that are invoked. Its most important attributes are:

• One or more indices, each with one or more types

• The queries to issue

• Source URL of the benchmark data

• A list of steps to run, which we’ll call “challenge”, for example indexing data with a specific number of docu-
ments per bulk request or running searches for a defined number of iterations.

50 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

2.11.2 Track File Format and Storage

A track is specified in a JSON file.

Ad-hoc use

For ad-hoc use you can store a track definition anywhere on the file system and reference it with --track-path,
e.g:

provide a directory - Rally searches for a track.json file in this directory
Track name is "app-logs"
esrally --track-path=~/Projects/tracks/app-logs
provide a file name - Rally uses this file directly
Track name is "syslog"
esrally --track-path=~/Projects/tracks/syslog.json

Rally will also search for additional files like mappings or data files in the provided directory. If you use advanced
features like custom runners or parameter sources we recommend that you create a separate directory per track.

Custom Track Repositories

Alternatively, you can store Rally tracks also in a dedicated git repository which we call a “track repository”. Rally
provides a default track repository that is hosted on Github. You can also add your own track repositories although this
requires a bit of additional work. First of all, track repositories need to be managed by git. The reason is that Rally
can benchmark multiple versions of Elasticsearch and we use git branches in the track repository to determine the
best match for each track (based on the command line parameter --distribution-version). The versioning
scheme is as follows:

• The master branch needs to work with the latest master branch of Elasticsearch.

• All other branches need to match the version scheme of Elasticsearch, i.e. MAJOR.MINOR.PATCH-SUFFIX
where all parts except MAJOR are optional.

Rally implements a fallback logic so you don’t need to define a branch for each patch release of Elasticsearch. For
example:

• The branch 6.0.0-alpha1 will be chosen for the version 6.0.0-alpha1 of Elasticsearch.

• The branch 5 will be chosen for all versions for Elasticsearch with the major version 5, e.g. 5.0.0, 5.1.3
(provided there is no specific branch).

Rally tries to use the branch with the best match to the benchmarked version of Elasticsearch.

Rally will also search for related files like mappings or custom runners or parameter sources in the track repos-
itory. However, Rally will use a separate directory to look for data files (~/.rally/benchmarks/data/
$TRACK_NAME/). The reason is simply that we do not want to check multi-GB data files into git.

Creating a new track repository

All track repositories are located in ~/.rally/benchmarks/tracks. If you want to add a dedicated track
repository, called private follow these steps:

cd ~/.rally/benchmarks/tracks
mkdir private
cd private
git init

2.11. Track Reference 51

https://github.com/elastic/rally-tracks

Rally Documentation, Release 0.8.0

add your track now
git add .
git commit -m "Initial commit"

If you want to share your tracks with others you need to add a remote and push it:

git remote add origin git@git-repos.acme.com:acme/rally-tracks.git
git push -u origin master

If you have added a remote you should also add it in ~/.rally/rally.ini, otherwise you can skip this step.
Open the file in your editor of choice and add the following line in the section tracks:

private.url = <<URL_TO_YOUR_ORIGIN>>

Rally will then automatically update the local tracking branches before the benchmark starts.

You can now verify that everything works by listing all tracks in this track repository:

esrally list tracks --track-repository=private

This shows all tracks that are available on the master branch of this repository. Suppose you only created tracks
on the branch 2 because you’re interested in the performance of Elasticsearch 2.x, then you can specify also the
distribution version:

esrally list tracks --track-repository=private --distribution-version=2.0.0

Rally will follow the same branch fallback logic as described above.

Adding an already existing track repository

If you want to add a track repository that already exists, just open ~/.rally/rally.ini in your editor of choice
and add the following line in the section tracks:

your_repo_name.url = <<URL_TO_YOUR_ORIGIN>>

After you have added this line, have Rally list the tracks in this repository:

esrally list tracks --track-repository=your_repo_name

When to use what?

We recommend the following path:

• Start with a simple json file. The file name can be arbitrary.

• If you need custom runners or parameter sources, create one directory per track. Then you can keep everything
that is related to one track in one place. Remember that the track JSON file needs to be named track.json.

• If you want to version your tracks so they can work with multiple versions of Elasticsearch (e.g. you are running
benchmarks before an upgrade), use a track repository.

2.11.3 Anatomy of a track

A track JSON file consists of the following sections:

52 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

• indices

• operations

• challenges

In the indices section you describe the relevant indices. Rally can auto-manage them for you: it can download
the associated data files, create and destroy the index and apply the relevant mappings. Sometimes, you may want to
have full control over the index. Then you can specify "auto-managed": false on an index. Rally will then
assume the index is already present. However, there are some disadvantages with this approach. First of all, this can
only work if you set up the cluster by yourself and use the pipeline benchmark-only. Second, the index is out of
control of Rally, which means that you need to keep track for yourself of the index configuration. Third, it does not
play nice with the laps feature (which you can use to run multiple iterations). Usually, Rally will destroy and recreate
all specified indices for each lap but if you use "auto-managed": false, it cannot do that. As a consequence it
will produce bogus metrics if your track specifies that Rally should run bulk-index operations (as you’ll just overwrite
existing documents from lap 2 on). So please use extra care if you don’t let Rally manage the track’s indices.

In the operations section you describe which operations are available for this track and how they are parametrized.
This section is optional and you can also define any operations directly per challenge. You can use it, if you want to
share operation definitions between challenges.

In the challenge or challenges section you describe one or more execution schedules respectively. Each sched-
ule either uses the operations defined in the operations block or defines the operations to execute inline. Think of
a challenge as a scenario that you want to test for your data set. An example challenge is to index with 2 clients at
maximum throughput while searching with another two clients with 10 operations per second.

2.11.4 Track elements

The track elements that are described here are defined in Rally’s JSON schema for tracks. Rally uses this track schema
to validate your tracks when it is loading them.

Each track defines the following info attributes:

• version (optional): An integer describing the track specification version in use. Rally uses it to detect in-
compatible future track specification versions and raise an error. See the table below for a reference of valid
versions.

• description (optional): A human-readable description of the track. Although it is optional, we recommend
providing it.

• data-url (optional): A http or https URL that points to the root path where Rally can obtain the corresponding
data for this track. This element is not needed if data are only generated on the fly by a custom runner.

Track Specification Version Rally version
1 >=0.7.3

The version property has been introduced with Rally 0.7.3. Rally versions before 0.7.3 do not recognize this
property and thus cannot detect incompatible track specification versions.

Example:

{
"version": 1,
"description": "POIs from Geonames",
"data-url": "http://benchmarks.elasticsearch.org.s3.amazonaws.com/corpora/geonames

→˓"
}

2.11. Track Reference 53

https://github.com/elastic/rally/blob/master/esrally/resources/track-schema.json

Rally Documentation, Release 0.8.0

meta

For each track, an optional structure, called meta can be defined. You are free which properties this element should
contain.

This element can also be defined on the following elements:

• challenge

• operation

• task

If the meta structure contains the same key on different elements, more specific ones will override the same key of
more generic elements. The order from generic to most specific is:

1. track

2. challenge

3. operation

4. task

E.g. a key defined on a task, will override the same key defined on a challenge. All properties defined within the
merged meta structure, will get copied into each metrics record.

indices

The indices section contains a list of all indices that are used by this track. By default Rally will assume that it can
destroy and create these indices at will.

Each index in this list consists of the following properties:

• name (mandatory): The name of the index.

• auto-managed (optional, defaults to true): Controls whether Rally or the user takes care of creating /
destroying the index. If this setting is false, Rally will neither create nor delete this index but just assume its
presence.

• types (optional): A list of types in this index.

Each type consists of the following properties:

• name (mandatory): Name of the type.

• mapping (mandatory): File name of the corresponding mapping file.

• documents (optional): File name of the corresponding documents that should be indexed. For local use, this
file can be a .json file. If you provide a data-url we recommend that you provide a compressed file here.
The following extensions are supported: .zip, .bz2, .gz, .tar, .tar.gz, .tgz or .tar.bz2. It must
contain exactly one JSON file with the same name. The preferred file extension for our official tracks is .bz2.

• includes-action-and-meta-data (optional, defaults to false): Defines whether the documents file
contains already an action and meta-data line (true) or only documents (false).

• document-count (mandatory if documents is set): Number of documents in the documents file. This
number is used by Rally to determine which client indexes which part of the document corpus (each of the
N clients gets one N-th of the document corpus). If you are using parent-child, specify the number of parent
documents.

• compressed-bytes (optional but recommended if documents is set): The size in bytes of the compressed
document file. This number is used to show users how much data will be downloaded by Rally and also to check
whether the download is complete.

54 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

• uncompressed-bytes (optional but recommended if documents is set): The size in bytes of the docu-
ments file after decompression. This number is used by Rally to show users how much disk space the decom-
pressed file will need and to check that the whole file could be decompressed successfully.

Example:

"indices": [
{

"name": "geonames",
"types": [

{
"name": "type",
"mapping": "mappings.json",
"documents": "documents.json.bz2",
"document-count": 8647880,
"compressed-bytes": 197857614,
"uncompressed-bytes": 2790927196

}
]

}
]

templates

The indices section contains a list of all index templates that Rally should create.

• name (mandatory): Index template name

• index-pattern (mandatory): Index pattern that matches the index template. This must match the definition
in the index template file.

• delete-matching-indices (optional, defaults to true): Delete all indices that match the provided index
pattern before start of the benchmark.

• template (mandatory): Index template file name

Example:

"templates": [
{

"name": "my-default-index-template",
"index-pattern": "my-index-*",
"delete-matching-indices": true,
"template": "default-template.json"

}
]

operations

The operations section contains a list of all operations that are available later when specifying challenges. Op-
erations define the static properties of a request against Elasticsearch whereas the schedule element defines the
dynamic properties (such as the target throughput).

Each operation consists of the following properties:

• name (mandatory): The name of this operation. You can choose this name freely. It is only needed to reference
the operation when defining schedules.

2.11. Track Reference 55

Rally Documentation, Release 0.8.0

• operation-type (mandatory): Type of this operation. Out of the box, Rally supports the following op-
eration types: bulk, force-merge, index-stats, node-stats, search, put-pipeline, and
cluster-health. You can run arbitrary operations however by defining custom runners.

Depending on the operation type a couple of further parameters can be specified.

bulk

With the operation type bulk you can execute bulk requests. It supports the following properties:

• index (optional): An index name that defines which indices should be targeted by this indexing operation.
Only needed if the index section contains more than one index and you don’t want to index all of them with
this operation.

• bulk-size (mandatory): Defines the bulk size in number of documents.

• batch-size (optional): Defines how many documents Rally will read at once. This is an expert setting and
only meant to avoid accidental bottlenecks for very small bulk sizes (e.g. if you want to benchmark with a
bulk-size of 1, you should set batch-size higher).

• pipeline (optional): Defines the name of an (existing) ingest pipeline that should be used (only supported
from Elasticsearch 5.0).

• conflicts (optional): Type of index conflicts to simulate. If not specified, no conflicts will be simulated.
Valid values are: ‘sequential’ (A document id is replaced with a document id with a sequentially increasing id),
‘random’ (A document id is replaced with a document id with a random other id).

Example:

{
"name": "index-append",
"operation-type": "bulk",
"bulk-size": 5000

}

Throughput will be reported as number of indexed documents per second.

force-merge

With the operation type force-merge you can call the force merge API. On older versions of Elasticsearch (prior
to 2.1), Rally will use the optimize API instead. It supports the following parameter:

• max_num_segments (optional) The number of segments the index should be merged into. Defaults to simply
checking if a merge needs to execute, and if so, executes it.

Throughput metrics are not necessarily very useful but will be reported in the number of completed force-merge
operations per second.

index-stats

With the operation type index-stats you can call the indices stats API. It does not support any parameters.

Throughput will be reported as number of completed index-stats operations per second.

56 Chapter 2. Source Code

http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-stats.html

Rally Documentation, Release 0.8.0

node-stats

With the operation type nodes-stats you can execute nodes stats API. It does not support any parameters.

Throughput will be reported as number of completed node-stats operations per second.

search

With the operation type search you can execute request body searches. It supports the following properties:

• index (optional): An index pattern that defines which indices should be targeted by this query. Only needed if
the index section contains more than one index. Otherwise, Rally will automatically derive the index to use.
If you have defined multiple indices and want to query all of them, just specify "index": "_all".

• type (optional): Defines the type within the specified index for this query.

• cache (optional): Whether to use the query request cache. By default, Rally will define no value thus the
default depends on the benchmark candidate settings and Elasticsearch version.

• request-params (optional): A structure containing arbitrary request parameters. The supported parameters
names are documented in the Python ES client API docs. Parameters that are implicitly set by Rally (e.g. body
or request_cache) are not supported (i.e. you should not try to set them and if so expect unspecified behavior).

• body (mandatory): The query body.

• pages (optional): Number of pages to retrieve. If this parameter is present, a scroll query will be executed. If
you want to retrieve all result pages, use the value “all”.

• results-per-page (optional): Number of documents to retrieve per page for scroll queries.

Example:

{
"name": "default",
"operation-type": "search",
"body": {
"query": {

"match_all": {}
}

},
"request-params": {
"_source_include": "some_field",
"analyze_wildcard": false

}
}

For scroll queries, throughput will be reported as number of retrieved scroll pages per second. The unit is ops/s,
where one op(eration) is one page that has been retrieved. The rationale is that each HTTP request corresponds to
one operation and we need to issue one HTTP request per result page. Note that if you use a dedicated Elasticsearch
metrics store, you can also use other request-level meta-data such as the number of hits for your own analyses.

For other queries, throughput will be reported as number of search requests per second, also measured as ops/s.

put-pipeline

With the operation-type put-pipeline you can execute the put pipeline API. Note that this API is only available
from Elasticsearch 5.0 onwards. It supports the following properties:

2.11. Track Reference 57

http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/multi-index.html
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search
https://www.elastic.co/guide/en/elasticsearch/reference/current/put-pipeline-api.html

Rally Documentation, Release 0.8.0

• id (mandatory): Pipeline id

• body (mandatory): Pipeline definition

Example:

{
"name": "define-ip-geocoder",
"operation-type": "put-pipeline",
"id": "ip-geocoder",
"body": {
"description": "Extracts location information from the client IP.",
"processors": [

{
"geoip": {
"field": "clientip",
"properties": [

"city_name",
"country_iso_code",
"country_name",
"location"

]
}

}
]

}
}

This example requires that the ingest-geoip Elasticsearch plugin is installed.

cluster-health

With the operation cluster-health you can execute the cluster health API. It supports the following properties:

• request-params (optional): A structure containing any request parameters that are allowed by the cluster
health API.

• index (optional): The name of the index that should be used to check.

The cluster-health operation will check whether the expected cluster health and will report a failure if this is
not the case. Use --on-error on the command line to control Rally’s behavior in case of such failures.

challenge

If you track has only one challenge, you can use the challenge element. If you have multiple challenges, you can
define an array of challenges.

This section contains one or more challenges which describe the benchmark scenarios for this data set. A challenge
can reference all operations that are defined in the operations section.

Each challenge consists of the following properties:

• name (mandatory): A descriptive name of the challenge. Should not contain spaces in order to simplify handling
on the command line for users.

• description (optional): A human readable description of the challenge.

58 Chapter 2. Source Code

https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html

Rally Documentation, Release 0.8.0

• default (optional): If true, Rally selects this challenge by default if the user did not specify a challenge on
the command line. If your track only defines one challenge, it is implicitly selected as default, otherwise you
need define "default": true on exactly one challenge.

• index-settings (optional): Defines the index settings of the benchmark candidate when an index is created.
Note that these settings are only applied if the index is auto-managed.

• schedule (mandatory): Defines the concrete execution order of operations. It is described in more detail
below.

Note: You should strive to minimize the number of challenges. If you just want to run a subset of the tasks in a
challenge, use task filtering.

schedule

The schedule element contains a list of tasks that are executed by Rally. Each task consists of the following
properties:

• name (optional): This property defines an explicit name for the given task. By default the operation’s name is
implicitly used as the task name but if the same operation is run multiple times, a unique task name must be
specified using this property.

• operation (mandatory): This property refers either to the name of an operation that has been defined in the
operations section or directly defines an operation inline.

• clients (optional, defaults to 1): The number of clients that should execute a task concurrently.

• warmup-iterations (optional, defaults to 0): Number of iterations that each client should execute to
warmup the benchmark candidate. Warmup iterations will not show up in the measurement results.

• iterations (optional, defaults to 1): Number of measurement iterations that each client executes. The
command line report will automatically adjust the percentile numbers based on this number (i.e. if you just run
5 iterations you will not get a 99.9th percentile because we need at least 1000 iterations to determine this value
precisely).

• warmup-time-period (optional, defaults to 0): A time period in seconds that Rally considers for warmup
of the benchmark candidate. All response data captured during warmup will not show up in the measurement
results.

• time-period (optional): A time period in seconds that Rally considers for measurement. Note that for bulk
indexing you should usually not define this time period. Rally will just bulk index all documents and consider
every sample after the warmup time period as measurement sample.

• schedule (optional, defaults to deterministic): Defines the schedule for this task, i.e. it defines at
which point in time during the benchmark an operation should be executed. For example, if you specify a
deterministic schedule and a target-interval of 5 (seconds), Rally will attempt to execute the corresponding
operation at second 0, 5, 10, 15 Out of the box, Rally supports deterministic and poisson but you
can define your own custom schedules.

• target-throughput (optional): Defines the benchmark mode. If it is not defined, Rally assumes this is a
throughput benchmark and will run the task as fast as it can. This is mostly needed for batch-style operations
where it is more important to achieve the best throughput instead of an acceptable latency. If it is defined, it
specifies the number of requests per second over all clients. E.g. if you specify target-throughput:
1000 with 8 clients, it means that each client will issue 125 (= 1000 / 8) requests per second. In total, all clients
will issue 1000 requests each second. If Rally reports less than the specified throughput then Elasticsearch
simply cannot reach it.

2.11. Track Reference 59

Rally Documentation, Release 0.8.0

• target-interval (optional): This is just 1 / target-throughput (in seconds) and may be
more convenient for cases where the throughput is less than one operation per second. Define either
target-throughput or target-interval but not both (otherwise Rally will raise an error).

Defining operations

In the following snippet we define two operations force-merge and a match-all query separately in an opera-
tions block:

{
"operations": [
{

"name": "force-merge",
"operation-type": "force-merge"

},
{

"name": "match-all-query",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

}
],
"challenge": {
"name": "just-query",
"description": "",
"schedule": [

{
"operation": "force-merge",
"clients": 1

},
{

"operation": "match-all-query",
"clients": 4,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}
}

If we do not want to reuse these operations, we can also define them inline. Note that the operations section is
gone:

{
"challenge": {
"name": "just-query",
"description": "",
"schedule": [

{
"operation": {
"name": "force-merge",
"operation-type": "force-merge"

},

60 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

"clients": 1
},
{

"operation": {
"name": "match-all-query",
"operation-type": "search",
"body": {
"query": {
"match_all": {}

}
}

},
"clients": 4,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}
}

Contrary to the query, the force-merge operation does not take any parameters, so Rally allows us to just specify
the operation-type for this operation. It’s name will be the same as the operation’s type:

{
"challenge": {
"name": "just-query",
"description": "",
"schedule": [

{
"operation": "force-merge",
"clients": 1

},
{

"operation": {
"name": "match-all-query",
"operation-type": "search",
"body": {

"query": {
"match_all": {}

}
}

},
"clients": 4,
"warmup-iterations": 1000,
"iterations": 1000,
"target-throughput": 100

}
]

}
}

Choosing a schedule

Rally allows you to choose between the following schedules to simulate traffic:

• deterministically distributed

2.11. Track Reference 61

https://en.wikipedia.org/wiki/Degenerate_distribution

Rally Documentation, Release 0.8.0

• Poisson distributed

The diagram below shows how different schedules in Rally behave during the first ten seconds of a benchmark. Each
schedule is configured for a (mean) target throughput of one operation per second.

If you want as much reproducibility as possible you can choose the deterministic schedule. A Poisson distribution
models random independent arrivals of clients which on average match the expected arrival rate which makes it suitable
for modelling the behaviour of multiple clients that decide independently when to issue a request. For this reason,
Poisson processes play an important role in queueing theory.

If you have more complex needs on how to model traffic, you can also implement a custom schedule.

Time-based vs. iteration-based

You should usually use time periods for batch style operations and iterations for the rest. However, you can also choose
to run a query for a certain time period.

All tasks in the schedule list are executed sequentially in the order in which they have been defined. However, it
is also possible to execute multiple tasks concurrently, by wrapping them in a parallel element. The parallel
element defines of the following properties:

• clients (optional): The number of clients that should execute the provided tasks. If you specify this property,
Rally will only use as many clients as you have defined on the parallel element (see examples)!

• warmup-time-period (optional, defaults to 0): Allows to define a default value for all tasks of the
parallel element.

• time-period (optional, no default value if not specified): Allows to define a default value for all tasks of the
parallel element.

62 Chapter 2. Source Code

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Queueing_theory

Rally Documentation, Release 0.8.0

• warmup-iterations (optional, defaults to 0): Allows to define a default value for all tasks of the
parallel element.

• iterations (optional, defaults to 1): Allows to define a default value for all tasks of the parallel element.

• completed-by (optional): Allows to define the name of one task in the tasks list. As soon as this task
has completed, the whole parallel task structure is considered completed. If this property is not explicitly
defined, the parallel task structure is considered completed as soon as all its subtasks have completed. A
task is completed if and only if all associated clients have completed execution.

• tasks (mandatory): Defines a list of tasks that should be executed concurrently. Each task in the list can define
the following properties that have been defined above: clients, warmup-time-period, time-period,
warmup-iterations and iterations.

Note: parallel elements cannot be nested.

Warning: Specify the number of clients on each task separately. If you specify this number on the parallel
element instead, Rally will only use that many clients in total and you will only want to use this behavior in very
rare cases (see examples)!

2.11.5 Examples

A track with a single task

To get started with custom tracks, you can benchmark a single task, e.g. a match_all query:

{
"description": "Simple search-only track",
"challenge": {
"name": "just-search",
"schedule": [

{
"operation": {
"operation-type": "query",
"body": {

"query": {
"match_all": {}

}
}

},
"warmup-iterations": 100,
"iterations": 100,
"target-throughput": 10

}
]

}
}

This track assumes that you have an existing cluster with pre-populated data. It will run the provided match_all query
at 10 operations per second with one client and use 100 iterations as warmup and the next 100 iterations to measure.

For the examples below, note that we do not show the operation definition but you should be able to infer from the
operation name what it is doing.

2.11. Track Reference 63

Rally Documentation, Release 0.8.0

Running unthrottled

In this example Rally will run a bulk index operation unthrottled for one hour:

"schedule": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8

}
]

Running tasks in parallel

Note: You cannot nest parallel tasks.

If we want to run tasks in parallel, we can use the parallel element. In the simplest case, you let Rally decide the
number of clients needed to run the parallel tasks (note how we can define default values on the parallel element):

{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [
{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200

}
]

}
}

]
}

Rally will determine that three clients are needed to run each task in a dedicated client. You can also see that each task
can have different settings.

However, you can also explicitly define the number of clients:

"schedule": [
{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{

64 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

"operation": "match-all",
"clients": 4,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,
"target-throughput": 200

}
]

}
}

]

This schedule will run a match all query, a term query and a phrase query concurrently. It will run with eight clients
in total (four for the match all query and two each for the term and phrase query).

In this scenario, we run indexing and a few queries in parallel with a total of 14 clients:

"schedule": [
{
"parallel": {

"tasks": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,
"target-throughput": 50

},
{
"operation": "default",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,
"warmup-iterations": 50,
"iterations": 100,
"target-throughput": 200

}
]

}

2.11. Track Reference 65

Rally Documentation, Release 0.8.0

}
]

We can use completed-by to stop querying as soon as bulk-indexing has completed:

"schedule": [
{
"parallel": {

"completed-by": "bulk",
"tasks": [

{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,
"target-throughput": 50

},
{
"operation": "default",
"clients": 2,
"warmup-time-period": 480,
"time-period": 7200,
"target-throughput": 50

}
]

}
}

]

We can also mix sequential tasks with the parallel element. In this scenario we are indexing with 8 clients and
continue querying with 6 clients after indexing has finished:

"schedule": [
{
"operation": "bulk",
"warmup-time-period": 120,
"time-period": 3600,
"clients": 8,
"target-throughput": 50

},
{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{
"operation": "default",
"clients": 2,
"target-throughput": 50

},
{
"operation": "term",
"clients": 2,
"target-throughput": 200

},
{
"operation": "phrase",
"clients": 2,

66 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

"target-throughput": 200
}

]
}

}
]

Be aware of the following case where we explicitly define that we want to run only with two clients in total:

"schedule": [
{
"parallel": {

"warmup-iterations": 50,
"iterations": 100,
"clients": 2,
"tasks": [

{
"operation": "match-all",
"target-throughput": 50

},
{
"operation": "term",
"target-throughput": 200

},
{
"operation": "phrase",
"target-throughput": 200

}
]

}
}

]

Rally will not run all three tasks in parallel because you specified that you want only two clients in total. Hence,
Rally will first run “match-all” and “term” concurrently (with one client each). After they have finished, Rally will run
“phrase” with one client. You could also specify more clients than there are tasks but these will then just idle.

You can also specify a number of clients on sub tasks explicitly (by default, one client is assumed per subtask). This
allows to define a weight for each client operation. Note that you need to define the number of clients also on the
parallel parent element, otherwise Rally would determine the number of totally needed clients again on its own:

{
"parallel": {
"clients": 3,
"warmup-iterations": 50,
"iterations": 100,
"tasks": [

{
"operation": "default",
"target-throughput": 50

},
{

"operation": "term",
"target-throughput": 200

},
{

"operation": "phrase",
"target-throughput": 200,

2.11. Track Reference 67

Rally Documentation, Release 0.8.0

"clients": 2
}

]
}

}

This will ensure that the phrase query will be executed by two clients. All other ones are executed by one client.

2.12 Configure Elasticsearch: Cars

Note: You can skip this section if you use Rally only as a load generator.

2.12.1 Definition

A Rally “car” is a specific configuration of Elasticsearch. You can list the available cars with esrally list cars:

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Name Type Description
---------- ------ ----------------------------------
16gheap car Sets the Java heap to 16GB
1gheap car Sets the Java heap to 1GB
2gheap car Sets the Java heap to 2GB
4gheap car Sets the Java heap to 4GB
8gheap car Sets the Java heap to 8GB
defaults car Sets the Java heap to 1GB
verbose_iw car Log more detailed merge time stats
ea mixin Enables Java assertions

You can specify the car that Rally should use with e.g. --car="4gheap". It is also possible to specify one or more
“mixins” to further customize the configuration. For example, you can specify --car="4gheap,ea" to run with a
4GB heap and enable Java assertions (they are disabled by default).

Similar to custom tracks, you can also define your own cars.

2.12.2 The Anatomy of a car

The default car definitions of Rally are stored in ~/.rally/benchmarks/teams/default/cars. There we
find the following structure:

- 16gheap.ini
- 1gheap.ini
- 2gheap.ini
- 4gheap.ini
- defaults.ini
- ea

68 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

| - config
| - jvm.options
- ea.ini
- vanilla
| - config
| - elasticsearch.yml
| - jvm.options
| - log4j2.properties
- verbose_iw
| - config
| - elasticsearch.yml
| - jvm.options
| - log4j2.properties
- verbose_iw.ini

Each .ini file in the top level directory defines a car. And each directory (ea, vanilla or verbose_iw) contains
templates for the config files.

Let’s have a look at the 1gheap car by inspecting 1gheap.ini:

[meta]
description=Sets the Java heap to 1GB
type=car

[config]
base=vanilla

[variables]
heap_size=1g

The name of the car is derived from the ini file name. In the meta section we can provide a description and
the type. Use car if a configuration can be used standalone and mixin if it needs to be combined with other
configurations. In the config section we define that this definition is based on the vanilla configuration. We also
define a variable heap_size and set it to 1g.

Let’s open vanilla/config/jvm.options to see how this variable is used (we’ll only show the relevant part
here):

Xms represents the initial size of total heap space
Xmx represents the maximum size of total heap space

-Xms{{heap_size}}
-Xmx{{heap_size}}

So Rally reads all variables and the template files and replaces the variables in the final configuration. Note that
Rally does not know anything about jvm.options or elasticsearch.yml. For Rally, these are just plain text
templates that need to be copied to the Elasticsearch directory before running a benchmark. Under the hood, Rally
uses Jinja2 as template language. This allows you to use Jinja2 expressions in your carr configuration files.

If you open vanilla/config/elasticsearch.yml you will see a few variables that are not defined in the
.ini file:

• network_host

• http_port

• node_count_per_host

These values are derived by Rally internally based on command line flags and you cannot override them in your car
definition. You also cannot use these names as names for variables because Rally would simply override them.

2.12. Configure Elasticsearch: Cars 69

http://jinja.pocoo.org/docs/dev/

Rally Documentation, Release 0.8.0

If you specify multiple configurations, e.g. --car="4gheap,ea", Rally will apply them in order. It will first read
all variables in 4gheap.ini, then in ea.ini. Afterwards, it will copy all configuration files from the corresponding
config base of 4gheap and append all configuration files from ea. This also shows when to define a separate “car”
and when to define a “mixin”: If you need to amend configuration files, use a mixin, if you need to have a specific
configuration, define a car.

Custom Team Repositories

Rally provides a default team repository that is hosted on Github. You can also add your own team repositories
although this requires a bit of additional work. First of all, team repositories need to be managed by git. The reason
is that Rally can benchmark multiple versions of Elasticsearch and we use git branches in the track repository to
determine the best match. The versioning scheme is as follows:

• The master branch needs to work with the latest master branch of Elasticsearch.

• All other branches need to match the version scheme of Elasticsearch, i.e. MAJOR.MINOR.PATCH-SUFFIX
where all parts except MAJOR are optional.

Rally implements a fallback logic so you don’t need to define a branch for each patch release of Elasticsearch. For
example:

• The branch 6.0.0-alpha1 will be chosen for the version 6.0.0-alpha1 of Elasticsearch.

• The branch 5 will be chosen for all versions for Elasticsearch with the major version 5, e.g. 5.0.0, 5.1.3
(provided there is no specific branch).

Rally tries to use the branch with the best match to the benchmarked version of Elasticsearch.

Creating a new team repository

All team repositories are located in ~/.rally/benchmarks/teams. If you want to add a dedicated team repos-
itory, called private follow these steps:

cd ~/.rally/benchmarks/teams
mkdir private
cd private
git init
add your team now (don't forget to add the subdirectory "cars").
git add .
git commit -m "Initial commit"

If you want to share your teams with others (or you want to run remote benchmarks) you need to add a remote and
push it:

git remote add origin git@git-repos.acme.com:acme/rally-teams.git
git push -u origin master

If you have added a remote you should also add it in ~/.rally/rally.ini, otherwise you can skip this step.
Open the file in your editor of choice and add the following line in the section teams:

private.url = <<URL_TO_YOUR_ORIGIN>>

Rally will then automatically update the local tracking branches before the benchmark starts.

70 Chapter 2. Source Code

https://github.com/elastic/rally-teams

Rally Documentation, Release 0.8.0

Warning: If you run benchmarks against a remote machine that is under the control of Rally then you need to
add the custom team configuration on every node!

You can now verify that everything works by listing all teams in this team repository:

esrally list cars --team-repository=private

This shows all teams that are available on the master branch of this repository. Suppose you only created tracks
on the branch 2 because you’re interested in the performance of Elasticsearch 2.x, then you can specify also the
distribution version:

esrally list teams --team-repository=private --distribution-version=2.0.0

Rally will follow the same branch fallback logic as described above.

Adding an already existing team repository

If you want to add a team repository that already exists, just open ~/.rally/rally.ini in your editor of choice
and add the following line in the section teams:

your_repo_name.url = <<URL_TO_YOUR_ORIGIN>>

After you have added this line, have Rally list the tracks in this repository:

esrally list cars --team-repository=your_repo_name

2.13 Using Elasticsearch Plugins

You can have Rally setup an Elasticsearch cluster with plugins for you. However, there are a couple of restrictions:

• This feature is only supported from Elasticsearch 5.0.0 onwards

• Whereas Rally caches downloaded Elasticsearch distributions, plugins will always be installed via the Internet
and thus each machine where an Elasticsearch node will be installed, requires an active Internet connection.

2.13.1 Listing plugins

To see which plugins are available, run esrally list elasticsearch-plugins:

Available Elasticsearch plugins:

Name Configuration
----------------------- ----------------
analysis-icu
analysis-kuromoji
analysis-phonetic
analysis-smartcn
analysis-stempel
analysis-ukrainian
discovery-azure-classic
discovery-ec2
discovery-file

2.13. Using Elasticsearch Plugins 71

Rally Documentation, Release 0.8.0

discovery-gce
ingest-attachment
ingest-geoip
ingest-user-agent
lang-javascript
lang-python
mapper-attachments
mapper-murmur3
mapper-size
repository-azure
repository-gcs
repository-hdfs
repository-s3
store-smb
x-pack monitoring-local
x-pack security

Rally supports plugins only for Elasticsearch 5.0 or better. As the availability of plugins may change from release
to release we recommend that you include the --distribution-version parameter when listing plugins. By
default Rally assumes that you want to benchmark the latest master version of Elasticsearch.

Let’s see what happens if we run esrally list elasticsearch-plugins
--distribution-version=2.4.0:

No Elasticsearch plugins are available.

As mentioned before, this is expected as only Elasticsearch 5.0 or better is supported.

2.13.2 Running a benchmark with plugins

In order to tell Rally to install a plugin, use the --elasticsearch-plugins parameter when starting a race.
You can provide multiple plugins (comma-separated) and they will be installed in the order to that you define on the
command line.

Example:

esrally --distribution-version=5.5.0 --elasticsearch-plugins="analysis-icu,analysis-
→˓phonetic"

This will install the plugins analysis-icu and analysis-phonetic (in that order). In order to use the features
that these plugins provide, you need to write a custom track.

Rally will use several techniques to install and configure plugins:

• First, Rally checks whether directory plugins/PLUGIN_NAME in the currently configured team repository
exists. If this is the case, then plugin installation and configuration details will be read from this directory.

• Next, Rally will use the provided plugin name when running the Elasticsearch plugin installer. With this ap-
proach we can avoid to create a plugin configuration directory in the team repository for very simple plugins
that do not need any configuration.

As mentioned above, Rally also allows you to specify a plugin configuration and you can even combine them. Here
are some examples:

• Run a benchmark with the x-pack plugin in the security configuration:
--elasticsearch-plugins=xpack:security

• Run a benchmark with the x-pack plugin in the security and the graph configuration:
--elasticsearch-plugins=xpack:security+graph

72 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

Note: To benchmark the security configuration of x-pack you need to add the following command line op-
tions: --client-options="use_ssl:true,verify_certs:false,basic_auth_user:'rally',
basic_auth_password:'rally-password'" --cluster-health=yellow

If you are behind a proxy, please set the environment variable ES_JAVA_OPTS accordingly on each target machine
as described in the Elasticsearch plugin documentation.

2.13.3 Building plugins from sources

Plugin authors may want to benchmark source builds of their plugins. Your plugin is either:

• built alongside Elasticsearch

• built against a released version of Elasticsearch

Plugins built alongside Elasticsearch

To make this work, you need to manually edit Rally’s configuration file in ~/.rally/rally.ini. Suppose, we
want to benchmark the plugin “my-plugin”. Then you need to add the following entries in the source section:

plugin.my-plugin.remote.repo.url = git@github.com:example-org/my-plugin.git
plugin.my-plugin.src.subdir = elasticsearch-extra/my-plugin
plugin.my-plugin.build.task = :my-plugin:plugin:assemble
plugin.my-plugin.build.artifact.subdir = plugin/build/distributions

Let’s discuss these properties one by one:

• plugin.my-plugin.remote.repo.url (optional): This is needed to let Rally checkout the source code
of the plugin. If this is a private repo, credentials need to be setup properly. If the source code is already locally
available you may not need to define this property. The remote’s name is assumed to be “origin” and this is not
configurable. Also, only git is supported as revision control system.

• plugin.my-plugin.src.subdir (mandatory): This is the directory to which the plugin will be checked
out relative to src.root.dir. In order to allow to build the plugin alongside Elasticsearch, the plugin needs
to reside in a subdirectory of elasticsearch-extra (see also the Elasticsearch testing documentation.

• plugin.my-plugin.build.task (mandatory): The Gradle task to run in order to build the plugin arti-
fact. Note that this command is run from the Elasticsearch source directory as Rally assumes that you want to
build your plugin alongside Elasticsearch (otherwise, see the next section).

• plugin.my-plugin.build.artifact.subdir (mandatory): This is the subdirectory relative to
plugin.my-plugin.src.subdir in which the final plugin artifact is located.

In order to run a benchmark with my-plugin, you’d invoke Rally as fol-
lows: esrally --revision="elasticsearch:some-elasticsearch-revision,
my-plugin:some-plugin-revision" --elasticsearch-plugins="my-plugin" where you
need to replace some-elasticsearch-revision and some-plugin-revision with the appropriate git
revisions. Adjust other command line parameters (like track or car) accordingly. In order for this to work, you need to
ensure that:

• All prerequisites for source builds are installed.

• The Elasticsearch source revision is compatible with the chosen plugin revision. Note that you do not need to
know the revision hash to build against an already released version and can use git tags instead. E.g. if you

2.13. Using Elasticsearch Plugins 73

https://www.elastic.co/guide/en/elasticsearch/plugins/current/_other_command_line_parameters.html#_proxy_settings
https://github.com/elastic/elasticsearch/blob/master/TESTING.asciidoc#building-with-extra-plugins

Rally Documentation, Release 0.8.0

want to benchmark against Elasticsearch 5.6.1, you can specify --revision="elasticsearch:v5.6.
1,my-plugin:some-plugin-revision" (see e.g. the Elasticsearch tags on Github or use git tag in
the Elasticsearch source directory on the console).

• If your plugin needs to be configured, please ensure to create a proper plugin specification (see below).

Note: Rally can build all Elasticsearch core plugins out of the box without any further configuration.

Plugins based on a released Elasticsearch version

To make this work, you need to manually edit Rally’s configuration file in ~/.rally/rally.ini. Suppose, we
want to benchmark the plugin “my-plugin”. Then you need to add the following entries in the source section:

plugin.my-plugin.remote.repo.url = git@github.com:example-org/my-plugin.git
plugin.my-plugin.src.dir = /path/to/your/plugin/sources
plugin.my-plugin.build.task = :my-plugin:plugin:assemble
plugin.my-plugin.build.artifact.subdir = build/distributions

Let’s discuss these properties one by one:

• plugin.my-plugin.remote.repo.url (optional): This is needed to let Rally checkout the source code
of the plugin. If this is a private repo, credentials need to be setup properly. If the source code is already locally
available you may not need to define this property. The remote’s name is assumed to be “origin” and this is not
configurable. Also, only git is supported as revision control system.

• plugin.my-plugin.src.dir (mandatory): This is the absolute directory to which the source code will
be checked out.

• plugin.my-plugin.build.task (mandatory): The Gradle task to run in order to build the plugin arti-
fact. This command is run from the plugin project’s root directory.

• plugin.my-plugin.build.artifact.subdir (mandatory): This is the subdirectory relative to
plugin.my-plugin.src.dir in which the final plugin artifact is located.

In order to run a benchmark with my-plugin, you’d invoke Rally as fol-
lows: esrally --distribution-version="elasticsearch-version"
--revision="my-plugin:some-plugin-revision" --elasticsearch-plugins="my-plugin"
where you need to replace elasticsearch-version with the correct release (e.g. 6.0.0) and
some-plugin-revision with the appropriate git revisions. Adjust other command line parameters (like
track or car) accordingly. In order for this to work, you need to ensure that:

• All prerequisites for source builds are installed.

• The Elasticsearch release is compatible with the chosen plugin revision.

• If your plugin needs to be configured, please ensure to create a proper plugin specification (see below).

2.13.4 Anatomy of a plugin specification

Simple plugins

You can use Rally to benchmark community-contributed or even your own plugins. In the simplest case, the plugin
does not need any custom configuration. Then you just need to add the download URL to your Rally configuration
file. Consider we want to benchmark the plugin “my-plugin”:

74 Chapter 2. Source Code

https://github.com/elastic/elasticsearch/tags
https://github.com/elastic/elasticsearch/tree/master/plugins

Rally Documentation, Release 0.8.0

[distributions]
plugin.my-plugin.release.url=https://example.org/my-plugin/releases/{{VERSION}}/my-
→˓plugin-{{VERSION}}.zip

Then you can use --elasticsearch-plugins=my-plugin to run a benchmark with your plugin. Rally will
also replace {{VERSION}} with the distribution version that you have specified on the command line.

Plugins which require configuration

If the plugin needs a custom configuration we recommend to fork the official Rally teams repository and add your
plugin configuration there. Suppose, you want to benchmark “my-plugin” which has the following settings that can be
configured in elasticsearch.yml:

• myplugin.active: a boolean which activates the plugin

• myplugin.mode: Either simple or advanced

We want to support two configurations for this plugin: simple which will set myplugin.mode to simple and
advanced which will set myplugin.mode to advanced.

First, we need a template configuration. We will call this a “config base” in Rally. We will just need one config base
for this example and will call it “default”.

In $TEAM_REPO_ROOT create the directory structure for the plugin and its config base with mkdir -p myplu-
gin/default/config and add the following elasticsearch.yml in the new directory:

myplugin.active: true
myplugin.mode={{my_plugin_mode}}

That’s it. Later, Rally will just copy all files in myplugin/default to the home directory of the Elasticsearch node
that it configures. First, Rally will always apply the car’s configuration and then plugins can add their configuration on
top. This also explains why we have created a config/elasticsearch.yml. Rally will just copy this file and
replace template variables on the way.

Note: If you create a new customization for a plugin, ensure that the plugin name in the team repository matches
the core plugin name. Note that hyphens need to be replaced by underscores (e.g. “x-pack” becomes “x_pack”). The
reason is that Rally allows to write custom install hooks and the plugin name will become the root package name of
the install hook. However, hyphens are not supported in Python which is why we use underscores instead.

The next step is now to create our two plugin configurations where we will set the variables for our config base
“default”. Create a file simple.ini in the myplugin directory:

[config]
reference our one and only config base here
base=default

[variables]
my_plugin_mode=simple

Similarly, create advanced.ini in the myplugin directory:

[config]
reference our one and only config base here
base=default

2.13. Using Elasticsearch Plugins 75

https://github.com/elastic/rally-teams

Rally Documentation, Release 0.8.0

[variables]
my_plugin_mode=advanced

Rally will now know about myplugin and its two configurations. Let’s check that with esrally list
elasticsearch-plugins:

Available Elasticsearch plugins:

Name Configuration
----------------------- ----------------
analysis-icu
analysis-kuromoji
analysis-phonetic
analysis-smartcn
analysis-stempel
analysis-ukrainian
discovery-azure-classic
discovery-ec2
discovery-file
discovery-gce
ingest-attachment
ingest-geoip
ingest-user-agent
lang-javascript
lang-python
mapper-attachments
mapper-murmur3
mapper-size
myplugin simple
myplugin advanced
repository-azure
repository-gcs
repository-hdfs
repository-s3
store-smb
x-pack monitoring-local
x-pack security

As myplugin is not a core plugin, the Elasticsearch plugin manager does not know from where to install it, so we
need to add the download URL to ~/.rally/rally.ini as before:

[distributions]
plugin.myplugin.release.url=https://example.org/myplugin/releases/{{VERSION}}/
→˓myplugin-{{VERSION}}.zip

Now you can run benchmarks with the custom Elasticsearch plugin, e.g. with esrally
--distribution-version=5.5.0 --elasticsearch-plugins="myplugin:simple".

For this to work you need ensure two things:

1. The plugin needs to be available for the version that you want to benchmark (5.5.0 in the example above).

2. Rally will choose the most appropriate branch in the team repository before starting the benchmark. In practice,
this will most likely be branch “5” for this example. Therefore you need to ensure that your plugin configuration
is also available on that branch. See the README in the team repository to learn how the versioning scheme
works.

76 Chapter 2. Source Code

https://github.com/elastic/rally-teams#versioning-scheme

Rally Documentation, Release 0.8.0

2.14 Telemetry Devices

You probably want to gain additional insights from a race. Therefore, we have added telemetry devices to Rally. If
you invoke esrally list telemetry, it will show which telemetry devices are available:

dm@io:Projects/rally ‹master*›$ esrally list telemetry

____ ____
/ __ ____ _/ / /_ __
/ /_/ / __ `/ / / / / /

/ _, _/ /_/ / / / /_/ /
/_/ |_|__,_/_/_/__, /

/____/

Available telemetry devices:

Command Name Description
--------- --------------------- --
→˓-
jit JIT Compiler Profiler Enables JIT compiler logs.
gc GC log Enables GC logs.
jfr Flight Recorder Enables Java Flight Recorder (requires an Oracle
→˓JDK)
perf perf stat Reads CPU PMU counters (requires Linux and perf)

Keep in mind that each telemetry device may incur a runtime overhead which can skew
→˓results.

You can attach one or more of these telemetry devices to the benchmarked cluster. However, this only works if Rally
provisions the cluster (i.e. it does not work with --pipeline=benchmark-only).

2.14.1 jfr

The jfr telemetry device enables the Java Flight Recorder on the benchmark candidate. Java Flight Recorder ships
only with Oracle JDK, so Rally assumes that Oracle JDK is used for benchmarking.

To enable jfr, invoke Rally with esrally --telemetry jfr. jfr will then write a flight recording file which
can be opened in Java Mission Control. Rally prints the location of the flight recording file on the command line.

2.14. Telemetry Devices 77

http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/index.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html

Rally Documentation, Release 0.8.0

Note: The licensing terms of Java flight recorder do not allow you to run it in production environments without a
valid license (for details, please refer to the Oracle Java SE Advanced & Suite Products page). However, running in a
QA environment is fine.

2.14.2 jit

The jit telemetry device enables JIT compiler logs for the benchmark candidate. If the HotSpot disassembler library
is available, the logs will also contain the disassembled JIT compiler output which can be used for low-level analysis.
We recommend to use JITWatch for analysis.

hsdis can be built for JDK 8 on Linux with (based on a description by Alex Blewitt):

curl -O -O -O -O https://raw.githubusercontent.com/dmlloyd/openjdk/jdk8u/jdk8u/
→˓hotspot/src/share/tools/hsdis/{hsdis.c,hsdis.h,Makefile,README}
mkdir -p build/binutils
curl http://ftp.gnu.org/gnu/binutils/binutils-2.27.tar.gz | tar --strip-components=1 -
→˓C build/binutils -z -x -f -
make BINUTILS=build/binutils ARCH=amd64

After it has been built, the binary needs to be copied to the JDK directory (see README of hsdis for details).

2.14.3 gc

The gc telemetry device enables GC logs for the benchmark candidate. You can use tools like GCViewer to analyze
the GC logs.

78 Chapter 2. Source Code

http://www.oracle.com/technetwork/java/javaseproducts/overview/index.html
https://github.com/AdoptOpenJDK/jitwatch
http://alblue.bandlem.com/2016/09/javaone-hotspot.html
https://github.com/chewiebug/GCViewer

Rally Documentation, Release 0.8.0

2.14.4 perf

The perf telemetry device runs perf stat on each benchmarked node and writes the output to a log file. It can be
used to capture low-level CPU statistics. Note that the perf tool, which is only available on Linux, must be installed
before using this telemetry device.

2.15 Rally Daemon

At its heart, Rally is a distributed system, just like Elasticsearch. However, in its simplest form you will not notice,
because all components of Rally can run on a single node too. If you want Rally to configure and start Elasticsearch
nodes remotely or distribute the load test driver to apply load from multiple machines, you need to use Rally daemon.

Rally daemon needs to run on every machine that should be under Rally’s control. We can consider three different
roles:

• Benchmark coordinator: This is the machine where you invoke esrally. It is responsible for user interaction,
coordinates the whole benchmark and shows the results. Only one node can be the benchmark coordinator.

• Load driver: Nodes of this type will interpret and run tracks.

• Provisioner: Nodes of this type will configure an Elasticsearch cluster according to the provided car and Elas-
ticsearch plugin configurations.

The two latter roles are not statically preassigned but rather determined by Rally based on the command line parameter
--load-driver-hosts (for the load driver) and --target-hosts (for the provisioner).

2.15.1 Preparation

First, install and configure Rally on all machines that are involved in the benchmark. If you want to automate this, there
is no need to use the interactive configuration routine of Rally. You can copy ~/.rally/rally.ini to the target machines
adapting the paths in the file as necessary. We also recommend that you copy ~/.rally/benchmarks/data to
all load driver machines before-hand. Otherwise, each load driver machine will need to download a complete copy of
the benchmark data.

Note: Rally Daemon will listen on port 1900 so please ensure to open that port on your firewall.

2.15.2 Starting

For all this to work, Rally needs to form a cluster. This is achieved with the binary esrallyd (note the “d” - for
daemon - at the end). You need to start the Rally daemon on all nodes: First on the coordinator node, then on all
others. The order does matter, because nodes attempt to connect to the coordinator on startup.

On the benchmark coordinator, issue:

esrallyd start --node-ip=IP_OF_COORDINATOR_NODE --coordinator-ip=IP_OF_COORDINATOR_
→˓NODE

On all other nodes, issue:

esrallyd start --node-ip=IP_OF_THIS_NODE --coordinator-ip=IP_OF_COORDINATOR_NODE

After that, all Rally nodes, know about each other and you can use Rally as usual. Please see the tips and tricks for
more examples.

2.15. Rally Daemon 79

Rally Documentation, Release 0.8.0

2.15.3 Stopping

You can leave the Rally daemon processes running in case you want to run multiple benchmarks. When you are done,
you can stop the Rally daemon on each node with:

esrallyd stop

Contrary to startup, order does not matter here.

2.15.4 Status

You can query the status of the local Rally daemon with:

esrallyd status

2.16 Pipelines

A pipeline is a series of steps that are performed to get benchmark results. This is not intended to customize the actual
benchmark but rather what happens before and after a benchmark.

An example will clarify the concept: If you want to benchmark a binary distribution of Elasticsearch, Rally has to
download a distribution archive, decompress it, start Elasticsearch and then run the benchmark. However, if you want
to benchmark a source build of Elasticsearch, it first has to build a distribution with Gradle. So, in both cases, different
steps are involved and that’s what pipelines are for.

You can get a list of all pipelines with esrally list pipelines:

Available pipelines:

Name Description
----------------------- ---
→˓--------------------------------
from-distribution Downloads an Elasticsearch distribution, provisions it, runs
→˓a benchmark and reports results.
from-sources-complete Builds and provisions Elasticsearch, runs a benchmark and
→˓reports results.
benchmark-only Assumes an already running Elasticsearch instance, runs a
→˓benchmark and reports results
from-sources-skip-build Provisions Elasticsearch (skips the build), runs a benchmark
→˓and reports results.

2.16.1 benchmark-only

This is intended if you want to provision a cluster by yourself. Do not use this pipeline unless you are absolutely sure
you need to. As Rally has not provisioned the cluster, results are not easily reproducable and it also cannot gather a
lot of metrics (like CPU usage).

To benchmark a cluster, you also have to specify the hosts to connect to. An example invocation:

esrally --pipeline=benchmark-only --target-hosts=search-node-a.intranet.acme.com:9200,
→˓search-node-b.intranet.acme.com:9200

80 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

2.16.2 from-distribution

This pipeline allows to benchmark an official Elasticsearch distribution which will be automatically downloaded by
Rally. The earliest supported version is Elasticsearch 1.7.0. An example invocation:

esrally --pipeline=from-distribution --distribution-version=1.7.5

The version numbers have to match the name in the download URL path.

You can also benchmark Elasticsearch snapshot versions by specifying the snapshot repository:

esrally --pipeline=from-distribution --distribution-version=5.0.0-SNAPSHOT --
→˓distribution-repository=snapshot

However, this feature is mainly intended for continuous integration environments and by default you should just
benchmark official distributions.

Note: This pipeline is just mentioned for completeness but Rally will autoselect it for you. All you need to do is to
define the --distribution-version flag.

2.16.3 from-sources-complete

You should use this pipeline when you want to build and benchmark Elasticsearch from sources. This pipeline will
only work from Elasticsearch 5.0 onwards because Elasticsearch switched from Maven to Gradle and Rally only
supports one build tool in the interest of maintainability.

Remember that you also need to install git and Gradle before and Rally needs to be configured for building for sources.
If that’s not the case you’ll get an error and have to run esrally configure first. An example invocation:

esrally --pipeline=from-sources-complete --revision=latest

You have to specify a revision.

Note: This pipeline is just mentioned for completeness but Rally will automatically select it for you. All you need to
do is to define the --revision flag.

2.16.4 from-sources-skip-build

This pipeline is similar to from-sources-complete except that it assumes you have built the binary once. It
saves time if you want to run a benchmark twice for the exact same version of Elasticsearch. Obviously it doesn’t
make sense to provide a revision: It is always the previously built revision. An example invocation:

esrally --pipeline=from-sources-skip-build

2.16. Pipelines 81

Rally Documentation, Release 0.8.0

2.17 Metrics

2.17.1 Metrics Records

At the end of a race, Rally stores all metrics records in its metrics store, which is a dedicated Elasticsearch cluster.
Rally stores the metrics in the indices rally-metrics-*. It will create a new index for each month.

Here is a typical metrics record:

{
"environment": "nightly",
"track": "geonames",
"track-params": {

"shard-count": 3
},
"challenge": "append-no-conflicts",
"car": "defaults",
"sample-type": "normal",
"trial-timestamp": "20160421T042749Z",
"@timestamp": 1461213093093,
"relative-time": 10507328,
"name": "throughput",
"value": 27385,
"unit": "docs/s",
"task": "index-append-no-conflicts",
"operation": "index-append-no-conflicts",
"operation-type": "Index",
"lap": 1,
"meta": {

"cpu_physical_cores": 36,
"cpu_logical_cores": 72,
"cpu_model": "Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz",
"os_name": "Linux",
"os_version": "3.19.0-21-generic",
"host_name": "beast2",
"node_name": "rally-node0",
"source_revision": "a6c0a81",
"distribution_version": "5.0.0-SNAPSHOT",
"tag_reference": "Github ticket 1234",

}
}

As you can see, we do not only store the metrics name and its value but lots of meta-information. This allows you to
create different visualizations and reports in Kibana.

Below we describe each field in more detail.

environment

The environment describes the origin of a metric record. You define this value in the initial configuration of Rally. The
intention is to clearly separate different benchmarking environments but still allow to store them in the same index.

track, track-params, challenge, car

This is the track, challenge and car for which the metrics record has been produced. If the user has provided track
parameters with the command line parameter, --track-params, each of them is listed here too.

82 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

If you specify a car with mixins, it will be stored as one string separated with “+”, e.g. --car="4gheap,ea" will
be stored as 4gheap+ea in the metrics store in order to simplify querying in Kibana. For more details, please see the
cars documentation.

sample-type

Rally runs warmup trials but records all samples. Normally, we are just interested in “normal” samples but for a full
picture we might want to look also at “warmup” samples.

trial-timestamp

A constant timestamp (always in UTC) that is determined when Rally is invoked. It is intended to group all samples
of a benchmark trial.

@timestamp

The timestamp in milliseconds since epoch determined when the sample was taken.

relative-time

The relative time in microseconds since the start of the benchmark. This is useful for comparing time-series graphs
over multiple trials, e.g. you might want to compare the indexing throughput over time across multiple benchmark
trials. Obviously, they should always start at the same (relative) point in time and absolute timestamps are useless for
that.

name, value, unit

This is the actual metric name and value with an optional unit (counter metrics don’t have a unit). Depending on the
nature of a metric, it is either sampled periodically by Rally, e.g. the CPU utilization or query latency or just measured
once like the final size of the index.

task, operation, operation-type

task is the name of the task (as specified in the track file) that ran when this metric has been gathered. Most of the
time, this value will be identical to the operation’s name but if the same operation is ran multiple times, the task name
will be unique whereas the operation may occur multiple times. It will only be set for metrics with name latency
and throughput.

operation is the name of the operation (as specified in the track file) that ran when this metric has been gathered.
It will only be set for metrics with name latency and throughput.

operation-type is the more abstract type of an operation. During a race, multiple queries may be issued which
are different operation``s but they all have the same ``operation-type (Search). For some
metrics, only the operation type matters, e.g. it does not make any sense to attribute the CPU usage to an individual
query but instead attribute it just to the operation type.

lap

The lap number in which this metric was gathered. Laps start at 1. See the command line reference for more info on
laps.

2.17. Metrics 83

Rally Documentation, Release 0.8.0

meta

Rally captures also some meta information for each metric record:

• CPU info: number of physical and logical cores and also the model name

• OS info: OS name and version

• Host name

• Node name: If Rally provisions the cluster, it will choose a unique name for each node.

• Source revision: We always record the git hash of the version of Elasticsearch that is benchmarked. This is even
done if you benchmark an official binary release.

• Distribution version: We always record the distribution version of Elasticsearch that is benchmarked. This is
even done if you benchmark a source release.

• Custom tag: You can define one custom tag with the command line flag --user-tag. The tag is prefixed by
tag_ in order to avoid accidental clashes with Rally internal tags.

• Operation-specific: The optional substructure operation contains additional information depending on the
type of operation. For bulk requests, this may be the number of documents or for searches the number of hits.

Note that depending on the “level” of a metric record, certain meta information might be missing. It makes no sense to
record host level meta info for a cluster wide metric record, like a query latency (as it cannot be attributed to a single
node).

2.17.2 Metric Keys

Rally stores the following metrics:

• latency: Time period between submission of a request and receiving the complete response. It also includes
wait time, i.e. the time the request spends waiting until it is ready to be serviced by Elasticsearch.

• service_time Time period between start of request processing and receiving the complete response. This
metric can easily be mixed up with latency but does not include waiting time. This is what most load testing
tools refer to as “latency” (although it is incorrect).

• throughput: Number of operations that Elasticsearch can perform within a certain time period, usually per
second. See the track reference for a definition of what is meant by one “operation” for each operation type.

• merge_parts_total_time_*: Different merge times as reported by Lucene. Only available if Lucene
index writer trace logging is enabled.

• merge_parts_total_docs_*: See merge_parts_total_time_*

• disk_io_write_bytes: number of bytes that have been written to disk during the benchmark. On Linux
this metric reports only the bytes that have been written by Elasticsearch, on Mac OS X it reports the number of
bytes written by all processes.

• disk_io_read_bytes: number of bytes that have been read from disk during the benchmark. The same
caveats apply on Mac OS X as for disk_io_write_bytes.

• cpu_utilization_1s: CPU usage in percent of the Elasticsearch process based on a one second sample
period. The maximum value is N * 100% where N is the number of CPU cores available.

• node_total_old_gen_gc_time: The total runtime of the old generation garbage collector across the
whole cluster as reported by the node stats API.

• node_total_young_gen_gc_time: The total runtime of the young generation garbage collector across
the whole cluster as reported by the node stats API.

84 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

• segments_count: Total number of segments as reported by the indices stats API.

• segments_memory_in_bytes: Number of bytes used for segments as reported by the indices stats API.

• segments_doc_values_memory_in_bytes: Number of bytes used for doc values as reported by the
indices stats API.

• segments_stored_fields_memory_in_bytes: Number of bytes used for stored fields as reported by
the indices stats API.

• segments_terms_memory_in_bytes: Number of bytes used for terms as reported by the indices stats
API.

• segments_norms_memory_in_bytes: Number of bytes used for norms as reported by the indices stats
API.

• segments_points_memory_in_bytes: Number of bytes used for points as reported by the indices stats
API.

• merges_total_time: Total runtime of merges as reported by the indices stats API. Note that this is not
Wall clock time (i.e. if M merge threads ran for N minutes, we will report M * N minutes, not N minutes).

• merges_total_throttled_time: Total time within merges have been throttled as reported by the indices
stats API. Note that this is not Wall clock time.

• indexing_total_time: Total time used for indexing as reported by the indices stats API. Note that this is
not Wall clock time.

• refresh_total_time: Total time used for index refresh as reported by the indices stats API. Note that this
is not Wall clock time.

• flush_total_time: Total time used for index flush as reported by the indices stats API. Note that this is
not Wall clock time.

• final_index_size_bytes: Final resulting index size after the benchmark.

2.18 Summary Report

At the end of each race, Rally shows a summary report. Below we’ll explain the meaning of each line including a
reference to its corresponding metrics key which can be helpful if you want to build your own reports in Kibana. Note
that not every summary report will show all lines.

2.18.1 Indexing time

• Definition: Total time used for indexing as reported by the indices stats API. Note that this is not Wall clock
time (i.e. if M indexing threads ran for N minutes, we will report M * N minutes, not N minutes).

• Corresponding metrics key: indexing_total_time

2.18.2 Merge time

• Definition: Total runtime of merges as reported by the indices stats API. Note that this is not Wall clock time.

• Corresponding metrics key: merges_total_time

2.18. Summary Report 85

Rally Documentation, Release 0.8.0

2.18.3 Refresh time

• Definition: Total time used for index refresh as reported by the indices stats API. Note that this is not Wall clock
time.

• Corresponding metrics key: refresh_total_time

2.18.4 Flush time

• Definition: Total time used for index flush as reported by the indices stats API. Note that this is not Wall clock
time.

• Corresponding metrics key: flush_total_time

2.18.5 Merge throttle time

• Definition: Total time within merges have been throttled as reported by the indices stats API. Note that this is
not Wall clock time.

• Corresponding metrics key: merges_total_throttled_time

2.18.6 Merge time (X)

Where X is one of:

• postings

• stored fields

• doc values

• norms

• vectors

• points

• Definition: Different merge times as reported by Lucene. Only available if Lucene index writer trace logging is
enabled (use the car verbose_iw for that).

• Corresponding metrics keys: merge_parts_total_time_*

2.18.7 Median CPU usage

• Definition: Median CPU usage in percent of the Elasticsearch process during the whole race based on a one
second sample period. The maximum value is N * 100% where N is the number of CPU cores available

• Corresponding metrics key: cpu_utilization_1s

2.18.8 Total Young Gen GC

• Definition: The total runtime of the young generation garbage collector across the whole cluster as reported by
the node stats API.

• Corresponding metrics key: node_total_young_gen_gc_time

86 Chapter 2. Source Code

Rally Documentation, Release 0.8.0

2.18.9 Total Old Gen GC

• Definition: The total runtime of the old generation garbage collector across the whole cluster as reported by the
node stats API.

• Corresponding metrics key: node_total_old_gen_gc_time

2.18.10 Index size

• Definition: Final resulting index size after the benchmark.

• Corresponding metrics key: final_index_size_bytes

2.18.11 Totally written

• Definition: number of bytes that have been written to disk during the benchmark. On Linux this metric reports
only the bytes that have been written by Elasticsearch, on Mac OS X it reports the number of bytes written by
all processes.

• Corresponding metrics key: disk_io_write_bytes

2.18.12 Heap used for X

Where X is one of:

• doc values

• terms

• norms

• points

• stored fields

• Definition: Number of bytes used for the corresponding item as reported by the indices stats API.

• Corresponding metrics keys: segments_*_in_bytes

2.18.13 Segment count

• Definition: Total number of segments as reported by the indices stats API.

• Corresponding metrics key: segments_count

2.18.14 Throughput

Rally reports the minimum, median and maximum throughput for each task.

• Definition: Number of operations that Elasticsearch can perform within a certain time period, usually per
second.

• Corresponding metrics key: throughput

2.18. Summary Report 87

Rally Documentation, Release 0.8.0

2.18.15 Latency

Rally reports several percentile numbers for each task. Which percentiles are shown depends on how many requests
Rally could capture (i.e. Rally will not show a 99.99th percentile if it could only capture five samples because that
would be a vanity metric).

• Definition: Time period between submission of a request and receiving the complete response. It also includes
wait time, i.e. the time the request spends waiting until it is ready to be serviced by Elasticsearch.

• Corresponding metrics key: latency

2.18.16 Service time

Rally reports several percentile numbers for each task. Which percentiles are shown depends on how many requests
Rally could capture (i.e. Rally will not show a 99.99th percentile if it could only capture five samples because that
would be a vanity metric).

• Definition: Time period between start of request processing and receiving the complete response. This metric
can easily be mixed up with latency but does not include waiting time. This is what most load testing tools
refer to as “latency” (although it is incorrect).

• Corresponding metrics key: service_time

2.18.17 Error rate

• Definition: The ratio of erroneous responses relative to the total number of responses. Any exception thrown by
the Python Elasticsearch client is considered erroneous (e.g. HTTP response codes 4xx, 5xx or network errors
(network unreachable)). For specific details, please check the reference documentation of the Elasticsearch
client. Usually any error rate greater than zero is alerting. You should investigate the root cause by inspecting
Rally and Elasticsearch logs and rerun the benchmark.

• Corresponding metrics key: service_time. Each service_time record has a meta.success flag.
Rally simply counts how often this flag is true and false respectively.

2.19 Frequently Asked Questions (FAQ)

2.19.1 A benchmark aborts with Couldn't find a tar.gz distribution.
What’s the problem?

This error occurs when Rally cannot build an Elasticsearch distribution from source code. The most likely cause is
that there is some problem in the build setup.

To see what’s the problem, try building Elasticsearch yourself. First, find out where the source code is located (run
grep src ~/.rally/rally.ini). Then change to the directory (src.root.dir + elasticsearch.
src.subdir which is usually ~/.rally/benchmarks/src/elasticsearch) and run the following com-
mands:

gradle clean
gradle :distribution:tar:assemble

By that you are mimicking what Rally does. Fix any errors that show up here and then retry.

88 Chapter 2. Source Code

https://elasticsearch-py.readthedocs.io
https://elasticsearch-py.readthedocs.io

Rally Documentation, Release 0.8.0

2.19.2 Where does Rally get the benchmark data from?

Rally comes with a set of tracks out of the box which we maintain in the rally-tracks repository on Github. This
repository contains the track descriptions. The actual data are stored as compressed files in an S3 bucket.

2.19.3 Will Rally destroy my existing indices?

First of all: Please (please, please) do NOT run Rally against your production cluster if you are just getting started
with it. You have been warned.

Depending on the track, Rally will delete and create one or more indices. For example, the geonames track specifies
that Rally should create an index named “geonames” and Rally will assume it can do to this index whatever it wants.
Specifically, Rally will check at the beginning of a race if the index “geonames” exists and delete it. After that it
creates a new empty “geonames” index and runs the benchmark. So if you benchmark against your own cluster (by
specifying the benchmark-only pipeline) and this cluster contains an index that is called “geonames” you will lose
(all) data if you run Rally against it. Rally will neither read nor write (or delete) any other index. So if you apply the
usual care nothing bad can happen.

2.19.4 What does latency and service_time mean and how do they related to the
took field that Elasticsearch returns?

Let’s start with the took field of Elasticsearch. took is the time needed by Elasticsearch to process a request. As it is
determined on the server, it can neither include the time it took the client to send the data to Elasticsearch nor the time
it took Elasticsearch to send it to the client. This time is captured by service_time, i.e. it is the time period from the
start of a request (on the client) until it has received the response.

The explanation of latency is a bit more involved. First of all, Rally defines two benchmarking modes:

• Throughput benchmarking mode: In this mode, Rally will issue requests as fast as it can, i.e. as soon as it
receives a response, it will issue the next request. This is ideal for benchmarking indexing. In this mode
latency == service_time.

• Throughput-throttled mode: If you define a specific target throughput rate in a track, for example 100 requests
per second (you should choose this number based on the traffic pattern that you experience in your production
environment), then Rally will define a schedule internally and will issue requests according to this schedule
regardless how fast Elasticsearch can respond. To put it differently: Imagine you want to grab a coffee on your
way to work. You make this decision independently of all the other people going to the coffee shop so it is
possible that you need to wait before you can tell the barista which coffee you want. The time it takes the barista
to make your coffee is the service time. The service time is independent of the number of customers in the
coffee shop. However, you as a customer also care about the length of the waiting line which depends on the
number of customers in the coffee shop. The time it takes between you entering the coffee shop and taking your
first sip of coffee is latency.

If you are interested in latency measurement, we recommend you watch the following talks:

“How NOT to Measure Latency” by Gil Tene:

Benchmarking Elasticsearch with Rally by Daniel Mitterdorfer:

2.19.5 Where and how long does Rally keep its data?

Rally stores a lot of data (this is just the nature of a benchmark) so you should keep an eye on disk usage. All data are
kept in ~/.rally and Rally does not implicitly delete them. These are the most important directories:

2.19. Frequently Asked Questions (FAQ) 89

https://github.com/elastic/rally-tracks
https://github.com/elastic/rally-tracks/blob/master/geonames/track.json#L9

Rally Documentation, Release 0.8.0

• ~/.rally/logs: Contains all log files. Logs are rotated daily. If you don’t need the logs anymore, you can
safely wipe this directory.

• ~/.rally/benchmarks/races: telemetry data, Elasticsearch logs and even complete Elasticsearch in-
stallations including the data directory if a benchmark failed. If you don’t need the data anymore, you can safely
wipe this directory.

• ~/.rally/benchmarks/src: the Elasticsearch Github repository (only if you had Rally build Elastic-
search from sources at least once).

• ~/.rally/benchmarks/data: the benchmark data sets. This directory can get very huge (way more than
100 GB if you want to try all default tracks). You can delete the files in this directory but keep in mind that Rally
may needs to download them again.

• ~/.rally/benchmarks/distributions: Contains all downloaded Elasticsearch distributions.

There are a few more directories but the ones above are the most disk-hogging ones.

2.19.6 Does Rally spy on me?

No. Rally does not collect or send any usage data and also the complete source code is open. We do value your
feedback a lot though and if you got any ideas for improvements, found a bug or have any other feedback, please head
over to Rally’s Discuss forum or raise an issue on Github.

2.19.7 Do I need an Internet connection?

You do NOT need Internet access on any node of your Elasticsearch cluster but the machine where you start Rally
needs an Internet connection to download track data sets and Elasticsearch distributions. After it has downloaded all
data, an Internet connection is not required anymore and you can specify --offline. If Rally detects no active
Internet connection, it will automatically enable offline mode and warn you.

We have a dedicated documentation page for running Rally offline which should cover all necessary details.

2.20 Glossary

track A track is the description of one ore more benchmarking scenarios with a specific document corpus. It defines
for example the involved indices, data files and which operations are invoked. List the available tracks with
esrally list tracks. Although Rally ships with some tracks out of the box, you should usually create
your own track based on your own data.

challenge A challenge describes one benchmarking scenario, for example indexing documents at maximum through-
put with 4 clients while issuing term and phrase queries from another two clients rate-limited at 10 queries
per second each. It is always specified in the context of a track. See the available challenges by listing the
corresponding tracks with esrally list tracks.

car A car is a specific configuration of an Elasticsearch cluster that is benchmarked, for example the out-of-the-box
configuration, a configuration with a specific heap size or a custom logging configuration. List the available cars
with esrally list cars.

telemetry Telemetry is used in Rally to gather metrics about the car, for example CPU usage or index size.

race A race is one invocation of the Rally binary. Another name for that is one “benchmarking trial”. During a race,
Rally runs one challenge on a track with the given car.

tournament A tournament is a comparison of two races. You can use Rally’s tournament mode for that.

90 Chapter 2. Source Code

https://discuss.elastic.co/c/elasticsearch/rally
https://github.com/elastic/rally

Rally Documentation, Release 0.8.0

2.21 Community Resources

Below are a few community resources about Rally. If you find an interesting article, talk or custom tracks, please raise
an issue or open a pull request.

2.21.1 Talks

2.21.2 Articles

Using Rally to benchmark Elasticsearch queries by Darren Smith

2.21. Community Resources 91

https://github.com/elastic/rally/issues
https://github.com/elastic/rally/issues
https://github.com/elastic/rally/pulls
http://blog.scottlogic.com/2016/11/22/using-rally-to-benchmark-elasticsearch.html

Rally Documentation, Release 0.8.0

92 Chapter 2. Source Code

CHAPTER 3

License

This software is licensed under the Apache License, version 2 (“ALv2”), quoted below.

Copyright 2015-2017 Elasticsearch <https://www.elastic.co>

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

93

https://www.elastic.co
http://www.apache.org/licenses/LICENSE-2.0

Rally Documentation, Release 0.8.0

94 Chapter 3. License

Index

C
car, 90
challenge, 90

R
race, 90

T
telemetry, 90
tournament, 90
track, 90

95

	Getting Help or Contributing to Rally
	Source Code
	Quickstart
	Installation
	Configuration
	Run a Benchmark: Races
	Compare Results: Tournaments
	Tips and Tricks
	Define Custom Workloads: Tracks
	Developing Rally
	Command Line Reference
	Offline Usage
	Track Reference
	Configure Elasticsearch: Cars
	Using Elasticsearch Plugins
	Telemetry Devices
	Rally Daemon
	Pipelines
	Metrics
	Summary Report
	Frequently Asked Questions (FAQ)
	Glossary
	Community Resources

	License

